首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the remarkable development of DNA nanotechnology, interest in DNA molecules has expanded beyond its biological role to building blocks in materials science. As a unique branch of DNA-based materials, DNA hydrogels have exhibited many fascinating characteristics, including broad biocompatibility, precise programmability, convenient modification, and tunable mechanical properties, which make DNA hydrogels ideal biomaterials. Moreover, by combining with functional nucleic acids, such as aptamers, i-motif nanostructures, CpG oligodeoxynucleotides, and DNAzymes, DNA hydrogels can be further tailored to provide additional target recognition, therapeutic potential, and catalytic activities, allowing them to play important roles in biosensing and medical applications. This review, aims to provide readers with an up-to-date overview of the important developments of biomedical DNA hydrogels. First, it introduces different synthetic strategies of hydrogels that utilize DNA as building materials and functional units within the hydrogel networks and discuss their advantages in biomedical applications. Subsequently, new approaches and applications of biomedical DNA hydrogels in the recent years are highlighted, such as therapeutic systems, cell culture platforms, tissue engineering materials, and biosensors. Finally, future perspectives and remaining challenges of DNA hydrogels in biomedicine are presented.  相似文献   

2.
Diabetic foot ulcer (DFU) is one of the most common complications of diabetes, bringing physical and mental challenges for patients due to the lack of efficient curative therapy. Despite considerable advances in pharmacological and surgical approaches, clinical trials for DFU patients remain disappointing due to the local overactive and excessive inflammation. Immunomodulatory hydrogels has significant advantages to overcome the clinical challenge of DFUs therapy. Here, recent fabrication and regenerative advances in the utilization of functional hydrogels for altering the immune microenvironment of DFUs are comprehensively reviewed. The pathological features and the healing processes of DFUs, followed by summarizing the physicochemical properties essential for the design of regenerative hydrogels for immunomodulation in DFUs, are briefly introduced. Then, the potential immuno-therapeutic modalities of hydrogels and emerging trends used to treat DFUs via multitherapeutic approaches and enhanced efficacy and safety are discussed. Taken together, by linking the structural properties of hydrogels to their functions in DFU therapy with a particular focus on immunomodulatory stimuli, this review can promote further advances in designing advanced hydrogels for DFUs, resulting in improved diabetic wound repair through translation into clinical setting in the near future.  相似文献   

3.
Load-bearing soft tissues are soft but strong, strong yet tough. These properties can only be replicated in synthetic hydrogels, which do not have the biocomplexity required by many biomedical applications. By contrast, natural hydrogels, although retaining the native complexity, are weak and fragile. Here a thermomechanical casting method is presented to achieve the mechanical capabilities of synthetic materials in biopolymer hydrogels. The thermomechanical cast and chemically crosslinked biopolymer chains form a short-range disordered but long-range ordered structure in water. Upon stretch, the disordered structure transforms to a hierarchically ordered structure. This disorder-order transformation resembles the synergy of the disordered elastin and ordered collagen in load-bearing soft tissues. As entropy drives a reverse order-disorder transformation, the hydrogels can resist repeated cycles of loads without deterioration in mechanical properties. Gelatin hydrogels produced by this method combine tissue-like tunable mechanical properties that outperform the gelatin prepared by synthetic approaches, and in vivo biocomplexity beyond current natural systems. Unlike polymer engineering approaches, which rely on specific crosslinks provided by special polymers, this strategy utilizes the entropy of swollen chains and is generalizable to many other biopolymers. It could thus significantly accelerate translational success of biomaterials.  相似文献   

4.
Nucleic acids are gaining significant attention as versatile building blocks for the next generation of soft materials. Due to significant advances in the chemical synthesis and biotechnological production, DNA becomes more widely available enabling its usage as bulk material in various applications. This has prompted researchers to actively explore the unique features offered by DNA‐containing materials like hydrogels. In this review article, recent developments in the field of hydrogels that feature DNA as a component either in the construction of the material or as functional unit within the construct and their biomedical applications are discussed in detail. First, different synthetic approaches for obtaining DNA hydrogels are summarized, which allows classification of DNA materials according to their structure. Then, new concepts, properties, and applications are highlighted such as DNA‐based biosensor devices, drug delivery platforms, and cell scaffolds. With the 2018 Nobel Prize in Physiology or Medicine being awarded to cancer immunotherapy underscoring the importance of this therapy, DNA hydrogel systems designed to modulate the immune system are introduced. This review aims to give the reader a timely overview of the most important and recent developments in this emerging class of therapeutically useful materials of DNA‐based hydrogels.  相似文献   

5.
Periodontitis is a biofilm-induced, host-mediated inflammatory disease that results in periodontal tissue destruction. The design of functional biomaterials based on disease pathophysiology is essential for enhancing their therapeutic effects in periodontitis treatment. As promising localized drug delivery systems and tissue engineering scaffolds, hydrogels have gained significant interest for controlled and sustained release of bioactive agents in periodontal applications. The rational design of bioactive hydrogels can facilitate bacterial control and modulate destructive host inflammation, thereby preventing the progression of periodontitis. In this review, the pathophysiological mechanisms underlying periodontitis as fundamental principles for the design of functional hydrogel systems are first introduced. In the following part, an overview is systematically provided of the types and functions of the bioactive hydrogel systems loaded with anti-bacterial and anti-inflammatory agents for periodontal delivery. Finally, the remaining challenges and future perspectives of hydrogel delivery systems for periodontal applications are proposed. It is believed that this review will inspire the rational design and development of innovative functional hydrogel biomaterials toward periodontal therapy.  相似文献   

6.
The ability to optically induce biological responses in 3D has been dwarfed by the physical limitations of visible light penetration to trigger photochemical processes. However, many biological systems are relatively transparent to low-energy light, which does not provide sufficient energy to induce photochemistry in 3D. To overcome this challenge, hydrogels that are capable of converting red or near-IR (NIR) light into blue light within the cell-laden 3D scaffolds are developed. The upconverted light can then excite optically active proteins in cells to trigger a photochemical response. The hydrogels operate by triplet–triplet annihilation upconversion. As proof-of-principle, it is found that the hydrogels trigger an optogenetic response by red/NIR irradiation of HeLa cells that have been engineered to express the blue-light sensitive protein Cry2olig. While it is remarkable to photoinduce the clustering of Cry2olig with blanket NIR irradiation in 3D, it is also demonstrated how the hydrogels trigger clustering within a single cell with great specificity and spatiotemporal control. In principle, these hydrogels may allow for photochemical control of cell function within 3D scaffolds, which can lead to a wealth of fundamental studies and biochemical applications.  相似文献   

7.
Nonequilibrium oscillation fueled by dissipating chemical energy is ubiquitous in living systems for realizing a broad range of complex functions. The design of synthetic materials that can mimic their biological counterparts in the production of dissipative structures and autonomous oscillations is of great interest but remains challenging. Here, a series of environmentally adaptable hydrogels functionalized with photoswitchable spiropyran derivatives that display a tunable equilibrium-shifting capability, thus endowing those hydrogels with a high degree of freedom and flexibility is reported. Such nonequilibrium hydrogels are able to responsively adapt their shapes under constant light illumination due to asymmetric deswelling, which in turn generates self-shadowing and consequently creates autonomous self-oscillating behaviors through a negative feedback process. Diverse oscillation modes including bending, twisting, and snap-through buckling with tunable frequency and amplitude are widely observed in three different molecular systems. Density functional theory calculations and finite element simulations further demonstrated the robustness of such a photoadaptable self-oscillation mechanism. This study provides a useful molecular design strategy for construction of highly adaptable hydrogels with potential applications in self-sustained soft robots and autonomous devices.  相似文献   

8.
Micrometer‐sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multicell coculture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user‐defined control of the microenvironments, from the order of singly encapsulated cells to entire 3D cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.  相似文献   

9.
Mechanical properties of hydrogels can be modified by the variation of structure and concentration of reactive building blocks. One promising biological source for the synthesis of biocompatible hydrogels is fibrinogen. Fibrinogen is a glycoprotein in blood, which can be transformed enzymatically to fibrin playing an important role in wound healing and clot formation. In the present work, it is demonstrated that hybrid hydrogels with their improved mechanical properties, tunable internal structure, and enhanced resistance to degradation can be synthesized by a combination of fibrinogen and reactive amphiphilic copolymers. Water‐soluble amphiphilic copolymers with tunable molecular weight and controlled amounts of reactive epoxy side groups are used as reactive crosslinkers to reinforce fibrin hydrogels. In the present work, copolymers that can influence the mechanical properties of fibrin‐based hydrogels are used. The reactive copolymers increase the storage modulus of the hydrogels from 600 Pa to 30 kPa. The thickness of fibrin fibers is regulated by the copolymer concentration. It could be demonstrated that the fibrin‐based hydrogels are biocompatible and support cell proliferation. Their degradation rate is considerably slower than that of native fibrin gels. In conclusion, fibrin‐based hydrogels with tunable elasticity and fiber thickness useful to direct cell responses like proliferation and differentiation are produced.  相似文献   

10.
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels—water‐swollen polymeric networks that act as ECM substrates—has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, “digital plasmonic patterning” (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near‐infrared laser, according to a digital (computer‐generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications.  相似文献   

11.
Functional conductive hydrogels are widely used in various application scenarios, such as artificial skin, cell scaffolds, and implantable bioelectronics. However, their novel designs and technological innovations are severely hampered by traditional manufacturing approaches. Direct ink writing (DIW) is considered a viable industrial-production 3D-printing technology for the custom production of hydrogels according to the intended applications. Unfortunately, creating functional conductive hydrogels by DIW has long been plagued by complicated ink formulation and printing processes. In this study, a highly 3D printable poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based ink made from fully commercially accessible raw materials is demonstrated. It is shown that complex structures can be directly printed with this ink and then precisely converted into high-performance hydrogels via a post-printing freeze–thawing treatment. The 3D-printed hydrogel exhibits high electrical conductivity of ≈2000 S m−1, outstanding elasticity, high stability and durability in water, electromagnetic interference shielding, and sensing capabilities. Moreover, the hydrogel is biocompatible, showing great potential for implantable and tissue engineering applications. With significant advantages, the fabrication strategy is expected to open up a new route to create multifunctional hydrogels with custom features, and can bring new opportunities to broaden the applications of hydrogel materials.  相似文献   

12.
Injectable hydrogels are often preferred when designing carriers for cell therapy or developing new bio-ink formulations. Biosynthetic hydrogels, which are a class of materials made with a hybrid design strategy, can be advantageous for endowing injectability while maintaining biological activity of the material. The chemical modification required to make these gels injectable by specific crosslinking pathways can be challenging and also make the hydrogels inhospitable to cells. Therefore, most efforts to functionalize biosynthetic hydrogel precursors toward injectability in the presence of cells try to balance between chemical and biological functionality, in order to preserve cell compatibility while addressing the injectability design challenges. Accordingly, hydrogel crosslinking strategies have evolved to include the use of photoinitiated “click” chemistry or bio-orthogonal reactions with rapid gelation kinetics and minimal cyto-toxicity required when working with cell-compatible hydrogel systems. With many new injectable biosynthetic materials emerging, their impact in cell-based regenerative medicine and bioprinting is also becoming more apparent. This review covers the main strategies that are used to endow biosynthetic polymers with injectability through rapid, cyto-compatible physical or covalent crosslinking and the main considerations for using the resulting injectable hydrogels in cell therapy, tissue regeneration, and bioprinting.  相似文献   

13.
Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.  相似文献   

14.
Nature has developed materials that are integrated and effective at controlling their properties of adhesiveness and cohesiveness; the chemistry of these materials has been optimized during evolution. For example, a catechol moiety found in the adhesive proteins of marine mussels regulates its properties between adhesion and cohesion, rapidly adapting to environmental conditions. However, in synthetic materials chemistry, introduced chemical moieties are usually monofunctional, either being adhesive or cohesive; typically, this is not effective compared to natural materials. Herein, it is demonstrated that hyaluronic acid‐catechol (HA‐catechol) conjugates can exhibit either adhesiveness, functionalizing the surface of materials, or cohesiveness, building 3D hydrogels. Up to now, catechol‐conjugated polymers have shown to be useful in one of these two functions. The usefulness of the polymer in stem cell engineering is demonstrated. A platform for neural stem cell culture may be prepared, utilizing the adhesive property of HA‐catechol, and hydrogels are fabricated to encapsulate the neural stem cells, utilizing the cohesive property of the HA conjugate. Moreover, the HA‐catechol hydrogels are highly neural stem cell compatible, showing better viability compared to existing methods based on HA hydrogels.  相似文献   

15.
In the primordial cell encapsulation systems, the main goal is to treat endocrine diseases avoiding the action of the immune system. Although lessons afforded by such systems are of outmost importance for the demands of tissue engineering and regenerative medicine, the paradigm has recently completely changed. If before the most important feature was to mask the encapsulated cells from the immune system, now it is known that the synergetic interplay between immune cells and the engineered niche is responsible for an adequate regenerative process. Combined with such immuno‐awareness, novel or nonconventional emerging techniques are being proposed to develop the new generation of cell encapsulation systems, namely layer‐by‐layer, microfluidics, superhydrophobic surfaces, and bioprinting technologies. Alongside the desire to create more realistic cell encapsulation systems, cell‐laden hydrogels are being explored as building blocks for bottom‐up strategies, within the concept of modular tissue engineering. The idea is to use the well‐established cell‐friendly environment provided by hydrogels and create more close‐to‐native systems that possess high heterogeneity, while providing multifunctional and adaptive inputs.  相似文献   

16.
Microphysiological systems (MPSs), based on microfabrication technologies and cell culture, can faithfully recapitulate the complex physiology of various tissues. However, 3D tissues formed using MPS have limitations in size and accessibility; their use in regenerative medicine is, therefore, still challenging. Here, an MPS-inspired scale-up vascularized engineered tissue construct that can be used in regenerative medicine is designed. Endothelial cell-laden hydrogels are sandwiched between two through-hole membranes. The microhole array in the through-hole membranes enables the molecular transport across the hydrogel layer, allowing long-term cell culture. Furthermore, the time-controlled delamination of through-hole membranes enables the harvesting of cell-cultured hydrogel constructs without damaging the capillary network. Importantly, when the tissue constructs are implanted in a mouse ischemic model, they protect against necrosis and promoted functional recovery to a greater extent than implanted cells, hydrogels, and simple gel–cell mixtures.  相似文献   

17.
Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable (PD) moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein‐based PD hydrogels composed of methacrylated gelatin and a crosslinker containing o‐nitrobenzyl ester groups are developed. The hydrogels are able to degrade rapidly and specifically in response to UV light and can be photopatterned to a variety of shapes and dimensions in a one‐step process. Micropatterned PD hydrogels are shown to improve cell distribution, alignment, and beating regularity of cultured neonatal rat cardiomyocytes. Overall this work introduces a new class of PD hydrogel based on natural and biofunctional polymers as cell culture substrates for improving cellular organization and function.  相似文献   

18.
Biocompatible and degradable dual-delivery gel systems based on hyperbranched dendritic−linear−dendritic copolymers (HBDLDs) is herein conceptualized and accomplished via thiol-ene click chemistry. The elasticity of the hydrogels is tunable by varying the lengths of PEG (2, 6, 10 kDa) or the dry weight percentages (20, 30, 40 wt%), and are found to range from 2–14.7 kPa, comparable to human skin. The co-delivery of antibiotics is achieved, where the hydrophilic drug novobiocin sodium salt (NB) is entrapped within the hydrophilic hydrogel, while the hydrophobic antibiotic ciprofloxacin (CIP) is encapsulated within the dendritic nanogels (DNGs) with hydrophobic cores (DNGs-CIP). The DNGs-CIP with drug loading capacity of 2.83 wt% are then physically entrapped within the hybrid hydrogels through UV curing. The hybrid hydrogels enable the quick release of NB and prolonged released of CIP. In vitro cell infection assays showed that the antibiotic-loaded hybrid hydrogels are able to treat bacterial infections with significant bacterial reduction. Hybrid hydrogel band aids are fabricated and exhibited better antibacterial activity compared with commercial antimicrobial band aids. Remarkably, most hydrogels and hybrid hydrogels show enhanced human dermal cell proliferation and could be degraded into non-toxic constituents, showing great promise as wound dressing materials.  相似文献   

19.
With the emergence of various hydrogels with excellent functions, the air-drying of hydrogels has attracted extensive attention. Improving the water retention capacity is critical in the application of hydrogels. Herein, inspired by the dense aggregation structure of natural hydrophilic macromolecules, hydrophilic substances (gelatin and glycerol) are first applied to enhance the water retention capacity of hydrogels by constructing a quenched double-hydrophilic coating. The weight retention ratio of the modified hydrogels is increased to 72.5% at 25 °C and 40 RH% after 5 days. Furthermore, the construction of hydrophilic coating on the surface does not affect the mechanical properties, and the modified hydrogels still retain strong water retention capacity after loading. In addition, this approach is applicable to hydrogels with different shapes and types, and various materials can be selected. Therefore, the proposed method provides new insights for expanding the application scope and service life of hydrogels.  相似文献   

20.
Bacterial infections are one of the biggest threats to wound healing. Despite significant efforts in wound condition monitoring and treatment, significant challenges remain in real-time wound monitoring and timely treatment. Herein, a kind of hydrogel with dual functions, which can not only quickly diagnose wound bacterial infection but also provide timely and effective treatment is developed. First, Carborxymethy chitosan (CMCS)-Protocatechualdehyde (PA)@Fe hydrogels with double dynamic bonds are prepared by chelating PA@Fe with CMCS. Second, the pH-sensitive Polydimethylsiloxane (PDMS) optical fibers are integrated into the CMCS-PA@Fe hydrogels to obtain the pH-sensitive optical fiber/CMCS-PA@Fe hydrogels that exhibit good real-time monitoring of the wound healing process. The tissue adhesion and self-healing properties of the pH-sensitive optical fiber/CMCS-PA@Fe hydrogels can adapt to the movement and stretching of the skin. Meanwhile, with the assistance of the photothermal effect, the hydrogels have a high antibacterial effect (>99.9%). In addition, the pH-sensitive optical fiber/CMCS-PA@Fe hydrogels also show an excellent therapeutic effect in the wound infection model. Moreover, reliable and timely wound pH information can be sent to intelligent devices through microcomputers to monitor the healing status. Overall, the pH-sensitive optical fiber/CMCS-PA@Fe hydrogels provide an entirely new platform for developing smart, real-time diagnostics and timely wound treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号