首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile approach to precisely control the perovskite grain sizes is proposed and demonstrated for high‐performance photovoltaic (PV) solar cells. With the introduction of various amounts of NH4H2PO2 (AHP) additives into the PbI2/CH3NH3I precursors, the grain scale of CH3NH3PbI3 films can be finely turned from hundreds of nanometer to micrometer scale, allowing evaluating the effects of crystalline grain boundary on trap densities, charge recombination, and PV device performance. The X‐ray diffraction and X‐ray photoelectron spectroscopy measurements indicate that the formation of intermediates plays a key role in assisting the perovskite crystal growth. The optimized devices show much larger open‐circuit voltages (VOC) up to 1.10 ± 0.02 V and significantly enhance power conversion efficiencies (PCEs) of 16.5 ± 0.7%, as compared to the control devices with PCE of 9.4 ± 1.0% and VOC of 1.00 ± 0.03 V. Further investigations confirm that the boosted PV performance origins from the decreased defect densities due to enlarged grain sizes. It is also demonstrated that the approach is general and applicable to other perovskite systems, e.g., HC(NH2)2PbI3. The results suggest the promising application of AHP in achieving high‐performance perovskite PV devices, and shed light on understanding the grain boundary effects on perovskite optoelectronics.  相似文献   

2.
It is widely believed that excess/residual lead iodide (PbI2) can affect the performance of perovskite solar cells . Moderate PbI2 can enhance efficiency by passivating defects, while extremely active PbI2 leads to non-negligible hysteresis effects and reduces device stability. Although several efforts are made to investigate the role of excess PbI2, its impact is still underestimated. Recent advances further demonstrate the extraordinary potential of modifying excess PbI2; however, a comprehensive study is required to obtain a deeper understanding. Herein, the important breakthroughs regarding excess PbI2 are reviewed and the mechanism of excess PbI2 in terms of efficiency and stability is rethought. In addition, the origins, verification, and regulation of residual PbI2 are summarized.  相似文献   

3.
Organic–inorganic hybrid perovskite solar cells have emerged as one of the promising photovoltaic candidates to generate renewable energy. However, the large amounts of grain boundaries and trap states that exist in the bulk or interfacial regions of perovskite films limit further enhancement of device efficiency. Herein, an additive engineering strategy is introduced employing trimethylammonium chloride in the methylammonium iodide precursor solution to prepare methylammonium lead iodide perovskite films with reduced grain boundaries and trap densities. This leads to an increased charge carrier diffusion coefficient and diffusion length, as evaluated by impedance and voltage decay measurements, intensity‐modulated photovoltage, and photocurrent spectroscopies. The proportion of nonradiative recombination processes is significantly reduced, consequently increasing device efficiency from 19.1% to 20.9% in these perovskite solar cells.  相似文献   

4.
5.
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.  相似文献   

6.
Organometal halide perovskite solar cells (PeSCs) are regarded as promising photovoltaics due to their outstanding power conversion efficiencies (PCEs). However, even though their PCEs are achieved over 20%, their intrinsically poor stability is a big bottleneck for their practical uses. Here, a simple method is reported using phenyl‐C61‐butyric acid methyl ester as a molecular additive to improve thermal stability of organometal halide perovskite crystals, which also improves the PCEs of the associated PeSCs. Moreover, by varying the grain size of perovskite crystals up to ≈150 µm, it is demonstrated that grain boundary plays a significant role in their thermal stability. Cells with smaller grain interface area (i.e., larger grain size) have higher thermal stability. The additive is located at grain boundaries and found to induce electron transfer reactions with halogens in the perovskite. The reaction products chemically passivate perovskite crystals and strongly bind halogen atoms at grain boundaries to their crystal lattice, preventing them from exiting from the crystal lattice, which improves thermal stability of perovskite crystals. This study offers a simple method for improving thermal stability of perovskite without any loss and opens up the possibility of the use of various molecular additives to achieve highly stable PeSCs.  相似文献   

7.
Increase in incident light and surface modification of the charge transport layer are powerful routes to achieve high-performance efficiency of perovskite solar cells (PSCs) by improving the short-circuit current density (JSC) and charge transport characteristics, respectively. However, few techniques are studied to reduce reflection loss and simultaneously improve the electrical performance of the electron transport layer (ETL). Herein, an inclined fluorine (F) sputtering process to fabricate high-performance PSCs is proposed. The proposed process simultaneously implements the antireflection effect of F coating and the effect of F doping on a TiO2 ETL, which increases the amount of light transmitted into the PSC due to the extremely low refractive index (≈1.39) and drastically improves the electrical properties of TiO2. Consequently, the JSC of the F coating and doping perovskite solar cell (F-PSC) increased from 25.05 to 26.01 mA cm−2, and the power conversion efficiency increased from 24.17% to 25.30%. The unencapsulated F-PSC exhibits enhanced air stability after 900 h of exposure to ambient environment atmosphere (30% relative humidity, 25 °C under dark condition). The inclined F sputtering process in this study can become a universal method for PSCs from the development stage to commercialization in the future.  相似文献   

8.
Additive engineering is one of the most efficient approaches to improve not only photovoltaic performance but also phase stability of formamidinium (FA)-based perovskite. Chlorine-based additives, such as methylammonium chloride (MACl), have been in general used to improve phase stability of FAPbI3, which however often leads to loss of open-circuit voltage Voc, accompanied by instability of the perovskite phase due to the volatile nature of the MA cation. A dual additive strategy for improving Voc and thereby the overall efficiency are reported here. The mixing ratio of MACl to CsCl is varied from [MACl]/[CsCl] = 4 to 1, where Voc increases with decreasing the ratio and best performance is achieved from [MACl]/[CsCl] = 2. As compared to the single source of MACl, the addition of CsCl reduces trap density and increases resistance against charge recombination, which is responsible for the increased Voc. Moreover, defect passivation achieved by dual additive enables better stability than the single additive MACl as confirmed by long-term stability tests with unencapsulated devices for 50 days under relative humidity of about 40% at room temperature. The best power conversion efficiency of 23.22% is achieved by dual additive, which is higher than that for single additive of MACl or CsCl.  相似文献   

9.
Solar cells based on mixed organic–inorganic halide perovskites are promising photovoltaic technologies with low‐cost and fantastic power conversion efficiency (PCE). Enhancing the nucleation and regulating the crystallization rate of perovskite films and improving the bendability of brittle hybrid grains are crucial to improving the photovoltaic performance of flexible perovskite solar cells (PVSCs). Here, a simple approach is first introduced for fabricating perovskite films with full coverage and larger crystalline size by incorporating the elastomer polyurethane (PU) into the perovskite precursor solution to both retard the crystallization rate and improve the bendability. Shiny, smooth perovskite films are obtained with compact, micrometer‐sized crystalline grains that exhibit excellent photoelectric performances. The PVSCs fabricated by incorporating PU into the perovskite precursor offer an impressive PCE of 18.7% with almost no photocurrent hysteresis and excellent stability in ambient air. More importantly, the elastomer PU additive crosslinks the grain boundaries between neighboring perovskite crystals to form a PU network that effectively improves the bendability of the perovskite films.  相似文献   

10.
11.
Narrow-bandgap mixed Pb-Sn perovskite solar cells (PSCs) have great feasibility for constructing efficient all-perovskite tandem solar cells, in combination with wide-bandgap lead halide PSCs. However, the power conversion efficiency of mixed Pb-Sn PSCs still lags behind lead-based counterparts. Here, additive engineering using ionic imidazolium tetrafluoroborate (IMBF4) is proposed, where the imidazolium (IM) cation and tetrafluoroborate (BF4) anion efficiently passivate defects at grain boundaries and improve crystallinity, simultaneously relaxing lattice strain, respectively. Defect passivation is achieved by the chemical interaction between the IM cation and the positively charged under-coordinated Pb2+ or Sn2+ ions, and lattice strain relaxation is realized by lattice expansion with the intercalation of BF4 anions into the perovskite lattice. As a result, the synergistic effects of the cation and anion in the IMBF4 additive greatly enhance the optoelectronic performance of half-mixed Pb-Sn perovskites, leading to much longer carrier lifetimes. The best-performing half-mixed Pb-Sn PSC shows an efficiency above 19% with negligible hysteresis, while retaining over 90% of its initial efficiency after 1000 h in a nitrogen-filled glovebox and showing a lifetime to 80% degradation of 53.5 h under continuous illumination.  相似文献   

12.
In a two-step procedure for fabricating perovskite films, the PbI2 layer formed on the substrate is converted to perovskite by reacting PbI2 with organic iodide. Excess PbI2 left after forming perovskite composition, however, might have an ill effect on device stability and current–voltage hysteresis, although it positively affects efficiency improvement.  Additive engineering is reported here on to control the residual PbI2 in a two-step procedure. A series of organic multi-ammonium chloride derivatives are introduced into the PbI2 precursor solution for the first-step coating, which results in an increase in the perovskite grain size. In addition, carrier lifetime is elongated due to the reduced trap density and the energetics are adjusted to facilitate the extraction of photogenerated carriers. The aminoguanidinium-containing precursor leads to an improved power conversion efficiency (PCE) as compared to the bare PbI2 precursor mainly due to the significantly enhanced open-circuit voltage and fill factor. Consequently, a PCE of 23.46% is achieved from the hysteresis-less photovoltaic parameters and 93% of the initial PCE is maintained after aging for 1000 h in ambient conditions.  相似文献   

13.
有机无机杂化钙钛矿已被证明是优良的光吸收材料,可用于高效率光伏领域。增大钙钛矿薄膜的晶粒尺寸和对晶界缺陷的钝化是提高太阳电池性能的重要途径。文章报道了一种简单的缺陷钝化技术,将有机卤化物盐BAI引入钙钛矿的混合阳离子中,以起到增大晶粒和钝化缺陷的作用,使钙钛矿太阳电池的光电转换效率从19.46%提升至21.56%。这种效率的提升是在不损失短路电流和填充因子的情况下,开路电压从1.04V提高到1.11V的结果。这种提升钙钛矿型太阳电池开路电压的方法,为进一步提高钙钛矿型太阳电池的光电性能提供了新的途径。  相似文献   

14.
15.
Organic–inorganic lead halide perovskites are emerging materials for the next‐generation photovoltaics. Lead halides are the most commonly used lead precursors for perovskite active layers. Recently, lead acetate (Pb(Ac)2) has shown its superiority as the potential replacement for traditional lead halides. Here, we demonstrate a strategy to improve the efficiency for the perovskite solar cell based on lead acetate precursor. We utilized methylammonium bromide as an additive in the Pb(Ac)2 and methylammonium iodide precursor solution, resulting in uniform, compact and pinhole‐free perovskite films. We observed enhanced charge carrier extraction between the perovskite layer and charge collection layers and delivered a champion power conversion efficiency of 18.3% with a stabilized output efficiency of 17.6% at the maximum power point. The optimized devices also exhibited negligible current density–voltage (JV) hysteresis under the scanning conditions.  相似文献   

16.
The origin of performance enhancements in p‐i‐n perovskite solar cells (PSCs) when incorporating low concentrations of the bulky cation 1‐naphthylmethylamine (NMA) are discussed. A 0.25 vol % addition of NMA increases the open circuit voltage (Voc) of methylammonium lead iodide (MAPbI3) PSCs from 1.06 to 1.16 V and their power conversion efficiency (PCE) from 18.7% to 20.1%. X‐ray photoelectron spectroscopy and low energy ion scattering data show NMA is located at grain surfaces, not the bulk. Scanning electron microscopy shows combining NMA addition with solvent assisted annealing creates large grains that span the active layer. Steady state and transient photoluminescence data show NMA suppresses non‐radiative recombination resulting from charge trapping, consistent with passivation of grain surfaces. Increasing the NMA concentration reduces device short‐circuit current density and PCE, also suppressing photoluminescence quenching at charge transport layers. Both Voc and PCE enhancements are observed when bulky cations (phenyl(ethyl/methyl)ammonium) are incorporated, but not smaller cations (Cs/MA)—indicating size is a key parameter. Finally, it demonstrates that NMA also enhances mixed iodide/bromide wide bandgap PSCs (Voc of 1.22 V with a 1.68 eV bandgap). The results demonstrate a facile approach to maximizing Voc and provide insights into morphological control and charge carrier dynamics induced by bulky cations in PSCs.  相似文献   

17.
18.
Antimony selenosulfide (Sb2(S,Se)3) has been emerging as a promising light absorber in the past few years owing to tunable bandgap (1.1–1.7 eV), high absorption coefficient (>105 cm−1) and excellent phase and environmental stability. However, the efficiency of Sb2(S,Se)3 solar cells lags far behind the Shockley–Queisser limit. One of the critical obstacles originates from various extrinsic and intrinsic defects. They mostly locate in the deep energy levels and are prone to form recombination centers, inhibiting the improvement of device performance. Herein, surface post-treatment via potassium iodide is introduced to fabricate high-quality Sb2(S,Se)3 films and solar cells. The surface post-treatment not only manipulates the crystal growth process to form compact films with larger grain size but also forms better band alignment and inhibits the formation of deep-level defects antimony antisite (SbSe), thus improving the quality of heterojunction. Consequently, the resultant Sb2(S,Se)3 solar cells achieve a champion power conversion efficiency  of 9.22%. This study provides a new strategy of passivating deep-level intrinsic defects via surface post-treatment for high-efficiency Sb2(S,Se)3 solar cells.  相似文献   

19.
Perovskite solar cells (PSCs) are considered one of the most promising next‐generation examples of high‐tech photovoltaic energy converters, as they possess an unprecedented power conversion efficiency with low cost. A typical high‐performance PSC generally contains a perovskite active layer sandwiched between an electron‐transport layer (ETL) and a hole‐transport layer (HTL). The ETL and HTL contribute to the charge extraction in the PSC. However, these additional two layers complicate the manufacturing process and raise the cost. To extend this technology for commercialization, it is highly desired that the structure of PSCs is further simplified without sacrificing their photovoltaic performances. Thus, ETL‐free or/and HTL‐free PSCs are developed and attract more and more interest. Herein, the commonly used methods in reducing the defect density and optimizing the energy levels in conventional PSCs in order to simplify their structures are summarized. Then, the development of diverse ETL‐free or/and HTL‐free PSCs is discussed, with the PSCs classified, including their working principles, implemented technologies, remaining challenges, and future perspectives. The aim is to redirect the way toward low‐cost and high‐performance PSCs with the simplest possible architecture.  相似文献   

20.
Organic–inorganic lead halide perovskite solar cells are promising alternatives to silicon‐based cells due to their low material costs and high photovoltaic performance. In this work, thin continuous perovskite films are combined with copper(I) iodide (CuI) as inorganic hole‐conducting material to form a planar device architecture. A maximum conversion efficiency of 7.5% with an average efficiency of 5.8 ± 0.8% is achieved which, to our knowledge, is the highest reported efficiency for CuI‐based devices with a planar structure. In contrast to related planar 2,2′,7,7′‐tetrakis‐(N,N ‐di‐4‐methoxyphenylamino)‐9,9′‐spirobifluorene (spiro‐OMeTAD)‐based devices, the CuI‐based devices do not show a pronounced hysteresis when tested by scanning the potential in a forward and backward direction. The strong quenching of photoluminescence (PL) signal and comparatively fast decay of open‐circuit voltage demonstrates a more rapid removal of positive charge carriers from the perovskite layer when in contact with CuI compared to spiro‐OMeTAD. A slow response on a timescale of 10–100 s is observed for the spiro‐OMeTAD‐based devices. In comparison, the CuI‐based device displays a significantly faster response as determined through electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decays (OCVDs). The characteristically slow kinetics measured through EIS and OCVD are linked directly to the current–voltage hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号