首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of hierarchical structure, chemistry, and functional activity within tissue-engineered scaffolds is of great importance in mimicking native bone tissue. Bone is a highly mineralized tissue which forms at ambient conditions by continuous crystallization of the mineral phase within an organic matrix in the presence of bone residing cells. Despite recent advances in the biofabrication of complex engineered tissues, replication of the heterogeneity of bone microenvironments has been a major challenge in constructing biomimetic bone scaffolds. Herein, inspired by the bone biomineralization process, the first example of bone mimicking constructs by 3D writing of a novel apatite-transforming ink in a supportive microgel matrix with living cells is demonstrated. Using this technique, complex bone-mimicked constructs are made at room temperature without requiring invasive chemicals, radiation, or postprocessing steps. This study demonstrates that mineralized constructs can be deposited within a high density of stem cells, directing the cellular organization, and promoting osteogenesis in vitro. These findings offer a new strategy for fabrication of bone mimicking constructs for bone tissue regeneration with scope to generate custom bone microenvironments for disease modeling, multicellular delivery, and in vivo bone repair.  相似文献   

2.
Osteons, the main organizational components of human compact bone, are cylindrical structures composed of layers of mineralized collagen fibrils, called lamellae. These lamellae have different orientations, different degrees of organization, and different degrees of mineralization where the intrafibrillar and extrafibrillar minerals are intergrown into one continuous network of oriented crystals. While cellular activity is clearly the source of the organic matrix, recent in vitro studies call into question whether the cells are also involved in matrix mineralization and suggest that this process could be simply driven by the interactions of the mineral with extracellular matrix. Through the remineralization of demineralized bone matrix, the complete multiscale reconstruction of the 3D structure and composition of the osteon without cellular involvement are demonstrated. Then, this cell-free in vitro system is explored as a realistic, functional model for the in situ investigation of matrix-controlled mineralization processes. Combined Raman and electron microscopy indicate that glycosaminoglycans (GAGs) play a more prominent role than generally assumed in the matrix–mineral interactions. The experiments also show that the organization of the collagen is in part a result of its interaction with the developing mineral.  相似文献   

3.
4.
Repair of bone defects with irregular shapes or at soft tissue insertion sites faces a huge challenge. Scaffolds capable of adapting to bone cavities, generating stiffness gradients, and inducing osteogenesis are necessary. Herein, a superelastic 3D ceramic fibrous scaffold is developed by assembly of intrinsically rigid, structurally flexible electrospun SiO2 nanofibers with chitosan as bonding sites (SiO2 NF‐CS) via a lyophilization technique. SiO2 NF‐CS scaffolds exhibit excellent elasticity (full recovery from 80% compression), fast recovery rate (>500 mm min?1), and good fatigue resistance (>10 000 cycles of compression) in an aqueous medium. SiO2 NF‐CS scaffolds induce human mesenchymal stem cell (hMSC) elongation and differentiation into osteoblasts. In vivo self‐fitting capability is demonstrated by implanting compressed SiO2 NF‐CS scaffolds into different shaped mandibular defects in rabbits, with a spontaneous recovery and full filling of defects. Rat calvarial defect repair validates enhanced bone formation and vascularization by cell (hMSC) histomorphology analysis. Further, subchondral bone scaffolds with gradations in SiO2 nanofibers are developed, leading to a stiffness gradient and spatially chondrogenic and osteogenic differentiation of hMSCs. This work presents a type of 3D ceramic fibrous scaffold, which can closely match bone defects with irregular shapes or at different implant sites, and is promising for clinical translation.  相似文献   

5.
The use of zeolite MFI‐coated titanium alloy for bone cell growth and new bone formation in vitro is investigated. The corrosion‐resistant MFI coating is shown to be osteoconductive and to promote proliferation of human fetal osteoblasts (hFOBs) as compared to bare titanium alloy, Ti6Al4V. The zeolite crystal microstructure appears to facilitate osteoblast adhesion and induces osteointegration, as evaluated with microscopy. In addition, the zeolite promotes the differentiation of hFOBs into mature osteoblasts, as well as the production of a mineralized matrix at earlier times in culture compared to Ti6Al4V, indicating higher osteoinductive properties of the MFI coating than titanium alone. A significant increase in the expression of the bone morphogenetic protein (BMP‐2) gene is measured in hFOBs cultured on zeolite coatings compared to bare Ti6Al4V. This is the first report on highly corrosion‐resistant zeolite MFI coatings on Ti6A14V alloys with the potential to be used as a material of improved osteointegration appropriate for bone tissue regeneration.  相似文献   

6.
Bone metastasis occurs in 70% of breast cancer patients and is a frequent cause of morbidity in cancer patients. A delicate balance exists in the bone microenvironment, but the functional dynamics underlying the tumor cell‐microenvironment interactions remain poorly understood. 3D in vitro model systems of metastasis can throw new light on this phenomenon. Silk protein fibroin scaffolds, are cytocompatible for 3D cancer cell culture. They are structurally more resistant to protease degradation than other native biomaterials making these matrices suitable for cancer modeling. In this report, human breast adenocarcinoma cells, human osteoblast like cells and mesenchymal stem cells are co‐cultered. Cancer cells and osteoblast‐like cells are found to interact through secreted products. Decreased population of osteoblast‐like cells and mineralization of extracellular matrix are observed as a result of co‐culture. Significantly increased migration of breast cancer cells is observed in the bone‐like constructs than in non‐seeded scaffolds. The co‐culture constructs show significant increase in drug resistance, invasiveness and angiogenicity. Co‐culture of breast cancer cells with osteoblast like cells and mesenchymal stem cells also indicate that the interaction of cancer cells with bone microenvironment varies with spatial organization, presence of osteogenic factors as well as stromal cell type. Here, results show that 3D in vitro co‐culture models is possibly a better system to study and target cancer progression.  相似文献   

7.
An organ culture system to model the physiological calcification process was designed using rat embryonic calvaria as a device for analyzing its mechanism. Standardized calvarial explants were dissected from rat embryos aged 18 and 20 days (E18 and E20) and cultured for 1, 3 and 5 days. The calcium content of the cultured explants was quantified by atomic absorption spectrophotometry. Equivalent explants were fixed, embedded in paraffin, sectioned and stained with von Kossa stain combined with hematoxylin-eosin or processed for energy-dispersive X-ray spectroscopy to determine the concentrations of calcium, phosphorus and carbon in the tissue. The total calcium content increased significantly in E18 and E20 cultured calvaria (E18cc and E20cc) over 5 days of culture. All cultured calvaria were von Kossa-positive, whereas the staining was intensified, and sound osteoblasts and osteocytes were observed in the bone matrix only in E18cc during the 5-day culture period. Concentrations of calcium and carbon increased significantly in E18cc over 5 days, whereas E20 showed little increase. Physiological calcification proceeded in E18cc, but not in E20cc. These results indicate that the organ culture system using E18 calvaria is useful for modeling the physiological calcification process in vitro.  相似文献   

8.
Tissue-engineered scaffolds have been extensively explored for treating bone defects; however, slow and insufficient vascularization throughout the scaffolds remains a key challenge for further application. Herein, a versatile microfluidic 3D printing strategy to fabricate black phosphorus (BP) incorporated fibrous scaffolds with photothermal responsive channels for improving vascularization and bone regeneration is proposed. The thermal channeled scaffolds display reversible shrinkage and swelling behavior controlled by near-infrared irradiation, which facilitates the penetration of suspended cells into the scaffold channels and promotes the prevascularization. Furthermore, the embedded BP nanosheets exhibit intrinsic properties for in situ biomineralization and improve in vitro cell proliferation and osteogenic differentiation. Following transplantation in vivo, these channels also promote host vessel infiltration deep into the scaffolds and effectively accelerate the healing process of bone defects. Thus, it is believed that these near-infrared responsive channeled scaffolds are promising candidates for tissue/vascular ingrowth in diverse tissue engineering applications.  相似文献   

9.
Cell-based regenerative constructs provide hope for the restoration of tissue function in compromised biological conditions such as complex bone defects. A strategy mimicking the cascade of events of postnatal fracture healing suggests an implant design where progenitor cells provide the driving force for the construct's tissue forming capacity, while framing biomaterials provide cells with 3D cues to direct cellular processes. Large bone defects mainly heal through the formation of an intermediate endochondral fracture callus. The authors aimed to develop an in vitro engineered fracture callus manufactured by bioprinting to provide a spatially organized tissue construct based on: i) in vitro 3D primed human periosteum derived cells and ii) biocompatible thiol-ene alginate hydrogels, mimicking the cells and extracellular matrix present in the different zones of the callus. Cell viability and maintained osteochondrogenic differentiation upon bioprinting is confirmed in vitro. In vivo assessment displays that the developed biomaterials provided essential 3D cues that further guided the cells in their tissue forming process in the absence of additional stimulatory molecules. The reported findings confirm the appeal of a biomimetic approach to steer tissue development of in vitro engineered constructs and illustrate the suitability of bioprinting methodologies for the fabrication of living regenerative implants.  相似文献   

10.
11.
An ideal craniofacial bone repair graft shall not only focus on the repair ability but also the regeneration of natural architecture with occlusal loads-related function restoration. However, such functional bone tissue engineering scaffold has rarely been reported. Herein, a hierarchical 3D graft is proposed for rebuilding craniofacial bone with both natural structure and healthy biofunction reconstruction. Inspired by the bone healing process, an organic–inorganic nanoink with ultrasmall calcium phosphate oligomers and bone morphogenetic protein-2 incorporated is developed for spatiotemporal guidance of new bone. Based on such homogeneous nanoink, a biomimetic graft, including a cortical layer containing Haversian system, and a cancellous layer featured with triply periodic minimum surface macrostructures, is fabricated via projection-based 3D printing method, and the layers are loaded with distinct concentrations of bioactive factors for regenerating new bone with gradient density. The graft exhibits excellent osteogenic and angiogenic potential in vitro, and accelerates revascularization and reconstructs neo-bone with original morphology in vivo. Benefiting from such natural architecture, loading force is widely transferred with reduced stress concentration around the inserted dental implant. Taken from native physiochemical and structural cues, this wstudy provides a novel strategy for functional tissue engineering through designing function-oriented biomaterials.  相似文献   

12.
Enamel matrix derivative (EMD: Emdogain) has been reported to stimulate the biosynthesis and regeneration of trabecular bone. To address whether the biological action of EMD is dependent on the local environment of osseous tissue, circular perforations were made in parietal bones and immediately filled with either EMD or its carrier, propylene glycol alginate (PGA), as control. On post-operative days 4-60, the dissected bones were examined by various histological techniques. New bone matrix, which was immunoreactive for bone sialoprotein (BSP), was formed from the periosteum at the peripheral area of perforations. Different from the findings reported in injured long bones, mineralized tissue was produced in the regenerating connective tissue within bone defects. This mineralized tissue was hardly immunostained for BSP, contained few collagen fibres, and lacked osteocytic lacunae and layers of osteoblasts and osteoid. Energy-dispersive X-ray analysis showed that Ca and P weight % and Ca/P molar ratio of this mineralized tissue were similar to or slightly higher than those in the pre-existing parietal bones. In addition, most multinucleated cells located in mineralized tissue lacked a ruffled border structure and showed weak immunoreaction for the lysosomal cysteine proteinase, cathepsin K, whereas those located in the bone matrix exhibited ruffled borders and strong cathepsin K expression. However, multinucleated cells located in both tissues were strongly stained for tartrate-resistant acid phosphatase. The volume fraction of such mineralized tissue appeared to be higher in EMD-applied bones than in PGA-applied controls. The mineralized tissue-forming stromal cells within bone defects appeared to show greater accumulation in EMD-applied bones than in PGA-applied controls. Our results suggest that the bioactive effects of EMD on bone wound healing and mineralized tissue formation depend, at least in part, on the local osseous environment where EMD has been applied.  相似文献   

13.
本文介绍了一种简便易行的方法,用以在体外建立近似体内实体瘤的肿瘤模型—肿瘤多细胞球模型(multicellular tumor spheroids,MCTSs).采用液滴重叠法(liquid overlay method)来构建HeLa肿瘤多细胞球模型,并在光镜下对肿瘤多细胞球的生长状况进行观察描述,再应用场发射扫描电...  相似文献   

14.
To observe bone cells by scanning electron microscopy (SEM), the mouse parietal bones were processed by decalcification with EDTA and digestion of collagen fibers with KOH to remove the bone matrix, in addition to the conventional preparation for SEM. The critical-point-dried specimens were split into two membranous pieces along the gaps formed by removing the bone matrix. By this method, osteoclasts showing full three-dimensional images of ruffled borders, osteoblasts showing special structures on the surfaces facing the bone matrix, and osteocytes extending many slender processes were clearly demonstrated in SEM. This new method may provide new viewpoints in bone cell biology.  相似文献   

15.
Herein, a 3D bioprinted scaffold is proposed, containing a calcitonin gene-related peptide (CGRP) and the β-adrenergic receptor blocker propranolol (PRN) as a new method to achieve effective repair of bone defects. By leveraging the neuromodulation mechanism of bone regeneration, CGRP and PRN loaded mesoporous silica nanoparticles are added into a hybrid bio-ink, which initially contains gelatin methacrylate, Poly (ethylene glycol) diacrylate and bone marrow mesenchymal stem cells (BMSCs). Subsequently, the optimized bio-ink is used for 3D bioprinting to create a composite scaffold with a pre-designed micro-nano hierarchical structure. The migration and tube formation of human umbilical vein endothelial cells (HUVECs) can be promoted by the scaffold, which is beneficial to the formation of a new capillary network during the bone repair process. With the release of CGRP from the scaffold, the secretion of neuropeptides by sensory nerves is simulated. Meanwhile, the release of PRN can inhibit the binding process of catecholamine to β-adrenergic receptor, co-promoting the osteogenic differentiation of BMSCs with CGRP and silicon ions, which will effectively enhance bone repair of a critical-sized cranial defect in a rat model. In conclusion, this study provides a promising strategy for bone defect repair by understanding the neuromodulatory mechanisms during bone regeneration.  相似文献   

16.
A spatially organized three‐dimensional (3D) co‐culture of multiple cell types is required to recapitulate cellular interactions and microenvironments in complex tissues. Although there are limited reports for 3D patterning of cells and materials, approaches to examine functional interactions of 3D spatially patterned multiple cell types are lacking entirely. This is mostly due to difficulties in controlling the physical arrangement of cells in a 3D matrix and the physical properties of the cell‐encapsulating matrix, while keeping the cells alive and functional for extended periods of time. In this study, an automated maskless fabrication technique is combined with a tunable polymer blend to spatially organize primary hippocampus neurons (HNs) and skeletal muscle myoblast cells (MCs) in a 3D hydrogel matrix with tunable mechanical and degradation properties. The spatial organization of these multiple cell types revealed that the presence of MCs resulted in increased cholinergic functionality of the HNs, as quantified by their choline acetyltransferase activity. The presence of a factor alone is not sufficient, but its spatiotemporal control is necessary; a condition that is possibly true for many cellular interactions. Therefore, the system described here offers a different approach to examine such previously unknown interactions. The approach proposed in this study can be used to examine interactions between many different cell types and shift the 3D fabrication paradigm to a next level, which is to fabricate tissues that are not only viable but also functional.  相似文献   

17.
The treatment of bone lesions, including fractures, tumor resection and osteoporosis, is a common clinical practice where bone healing and repair are pursued. It is widely accepted that calcium phosphate‐based materials improve integration of biomaterials with surrounding bone tissue and further serve as a template for proper function of bone‐forming cells. Within this context, mineralization on preformed substrates appears as an interesting and successful alternative for mineral surface functionalization. However, mineralization of “true” 3D scaffolds –in which the magnitude of the third dimension is within the same scale as the other two– is by no means a trivial issue because of the difficulty to obtain a homogeneous mineral layer deposited on the entire internal surface of the scaffold. Herein, a “flow‐through” electrodeposition process is applied for mineralization of 3D scaffolds composed of multiwall carbon nanotubes and chitosan. It is demonstrated that, irrespective of the experimental conditions used for electrodeposition (e.g., time, temperature and voltages), the continuous feed of salts provided by the use of a flow‐through configuration is the main issue if one desires to coat the entire internal structure of 3D scaffolds with a homogeneous mineral layer. Finally, mineralized scaffolds not only showed a remarkable biocompatibility when tested with human osteoblast cells, but also enhanced osteoblast terminal differentiation (as early as 7 days in calcifying media).  相似文献   

18.
Malignant bone tumors are one of the major serious diseases in clinic. Inferior reconstruction of new bone and rapid propagation of residual tumor cells are the main challenges to surgical intervention. Herein, a bifunctional DTC@BG scaffold for near‐infrared (NIR)‐activated photonic thermal ablation of osteosarcoma and accelerated bone defect regeneration is engineered by in situ growth of NIR‐absorbing cocrystal (DTC) on the surface of a 3D‐printing bioactive glass (BG) scaffold. The prominent photothermal conversion performance and outstanding bone regeneration capability of DTC@BG scaffolds originate from the precise tailoring of the bandgap between the electron donors and acceptors of DTC and promote new bone growth performance of BG scaffolds. DTC@BG scaffolds not only significantly promote tumor cell ablation in vitro, but also effectively facilitate bone tumor suppression in vivo. In particular, DTC@BG scaffolds exhibit excellent capability in stimulating osteogenic differentiation and angiogenesis, and finally promote newborn bone formation in the bone defects. This research represents the first paradigm for ablating osteosarcoma and facilitating new bone formation through precise modulation of electron donors and acceptors in the cocrystal, which offers a new avenue to construct high‐efficiency therapeutic platforms based on cocrystal strategy for ablation of malignant bone tumor.  相似文献   

19.
The osteoimmunology has revealed that immune system plays an important role in maintaining bone metabolism and remodeling. As long-term physiological factor in bone, mechanical stimulation such as micro-vibration stimulation (MVS) exerts effects on regulating osteogenesis and immune response. In this study, the osteo-immunodulatory effects of bicalcium phosphate (BCP) ceramics coupled with MVS are investigated. This results find that the combination of BCP ceramics and MVS may exert synergistic effects on the polarization and functional status of macrophages through activating plasma membrance Ca2+ ATPase (PMCA) channel, reducing the intracellular calcium ion concentration, and inhibiting downstream extracellular signal-regulated kinase (ERK)1/2 signaling pathway. BCP ceramics coupled MVS could drive the macrophage polarization to wound-healing M2 phenotype to decrease the production of pro-inflammatory factors, enhance the secretion of anti-inflammatory cytokines and growth factors such as transforming growth factor (TGF)-β1 and bone morphogenetic protein (BMP)-2. Moreover, BCP and MVS-modulated macrophage secretion pattern can trigger the BMP/TGF-Smad signaling pathways to induce osteoblastic differentiation of bone marrow mesenchymal stromal cells (BM-MSCs) in vitro, and maintain cellular viability and promote the formation of collagen-rich osteoid like tissues and mature blood vessels in vivo. This study demonstrates that the introduction of mechanical stimuli like non-invasive MVS is an effective strategy to improve bone repair effects of biomaterials through endowing them with superior osteo-immunodulatory capacity.  相似文献   

20.
In a previous report we showed that young rats fed a calcium-free diet for 28 days developed severe hypocalcaemia and showed a significant increase in serum alkaline phosphatase activity. The main histological and cytochemical changes exhibited by these animals in bone of the metaphyseal primary spongiosa were: (1) hyperplasia of osteoblasts, (2) an increase in the frequency of tartrate-resistant acid phosphatase (TRAP)-positive osteoblasts apposed to osteoid, and (3) an excessive amount of osteoid tissue. In addition to typical osteoblasts, there was a subpopulation of osteoblast-like cells with coated pits, lysosome-like bodies and large cytoplasmic processes. In the present study, we investigated how the above parameters change when calcium-depleted rats are placed on a normal diet for 7 days. Such a regimen normalized calcium concentration and alkaline phosphatase activity in the serum. The osteoid thickness returned to normal and, in some areas, was fully calcified. Most osteoblasts no longer showed TRAP activity and their ultrastructure was similar to that found in controls. Despite an intense alkaline phosphatase activity, some of them still exhibited a number of macrophagic characteristics. They were TRAP-positive, and showed electron-dense bodies in the cytoplasm facing bone, an abundance of coated pits, calcified spicules impinging on the cell membrane and large processes extending into the mineralized matrix. We concluded that calcium deficiency causes hyperplasia of osteoblasts in primary spongiosa and an increase in expression of TRAP. It also induces changes in their phenotype characterized by the acquisition of macrophagic cellular features. While TRAP activity is normalized by calcium repletion, macrophagic characteristics persist. These results suggest that the osteoblast can modulate its phenotype according to its physiological status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号