首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
Liquid marble (LM) is a droplet that is wrapped by hydrophobic solid particles, which behave as a non-wetting soft solid. Based on these properties, LM can be applied in fluidics and soft device applications. A wide variety of functional particles have been synthesized to form functional LMs. However, the formation of multifunctional LMs by integrating several types of functional particles is challenging. Here, a general strategy for the flexible patterning of functional particles on droplet surfaces in a patchwork-like design is reported. It is shown that LMs can switch their macroscopic behavior between a stable and active state on super-repellent surfaces in situ by jamming/unjamming the surface particles. Active LMs hydrostatically coalesce to form a self-sorted particle pattern on the droplet surface. With the support of LM handling robotics, on-demand cyclic activation–manipulation–coalescence–stabilization protocols by LMs with different sizes and particle types result in the reliable design of multi-faced LMs. Based on this concept, a single bi-functional LM is designed from two mono-functional LMs as an advanced droplet carrier.  相似文献   

2.
Fabricating electronic devices require integrating metallic conductors and polymeric insulators in complex structures. Current metal‐patterning methods such as evaporation and laser sintering require vacuum, multistep processes, and high temperature during sintering or postannealing to achieve desirable electrical conductivity, which damages low‐temperature polymer substrates. Here reports a facile ecofriendly room‐temperature metal printing paradigm using visible‐light projection lithography. With a particle‐free reactive silver ink, photoinduced redox reaction occurs to form metallic silver within designed illuminated regions through a digital mask on substrate with insignificant temperature change (<4 °C). The patterns exhibit remarkably high conductivity achievable at room temperature (2.4 × 107 S m?1, ≈40% of bulk silver conductivity) after simple room‐temperature chemical annealing for 1–2 s. The finest silver trace produced reaches 15 µm. Neither extra thermal energy input nor physical mask is required for the entire fabrication process. Metal patterns were printed on various substrates, including polyethylene terephthalate, polydimethylsiloxane, polyimide, Scotch tape, print paper, Si wafer, glass coverslip, and polystyrene. By changing inks, this paradigm can be extended to print various metals and metal–polymer hybrid structures. This method greatly simplifies the metal‐patterning process and expands printability and substrate materials, showing huge potential in fabricating microelectronics with one system.  相似文献   

3.
It has been found that remarkably severe spurious effects can occur in the current excited on microstrip line at moderate to high frequency, when the strip is wide (approximately w/h > 3). This newly observed effect occurs because one or more leaky modes (LMs) approaches the branch point at k/sub 0/ in the complex longitudinal wavenumber plane. When this happens, the attenuation (leakage) constant of these LMs becomes very small. Hence, the LMs can propagate to very large distances along the line with only minimal attenuation. This effect only occurs when the strip is fairly wide, and at certain frequencies. When it occurs, the effect can be disastrous since the continuous-spectrum (radiation) part of the current on the strip then decays very slowly with distance from the source so that the total strip current excited by the source exhibits spurious oscillations out to very large distances from the source. An approximate design rule for predicting this effect is given, which is accurate for wide strips (approximately w/h > 6). The LMs that are responsible for this effect are identified, and the behavior of these modes are studied for different strip widths.  相似文献   

4.
总结了开发一种简便快捷的可印制在挠性基板上于低温条件实现烧结形成高导电性线路的自还原型银导电墨水的制备方法。该导电墨水通过混合二乙醇胺溶液和银氨溶液制备得到。印制在塑料基材上后,在75℃下固化形成导电线路。这是因为在碱性环境与高于50℃的温度下,二乙醇胺可分解生成甲醛并自发地与银氨溶液发生反应。随后还原出银原子并让其吸附在基材上形成银薄膜。用该方法印制得到的银线其导电率可达到金属银导电率的20%,通过继续改进可应用于各种印制电子技术中。  相似文献   

5.
The transfer stamping process has been used to fabricate thin-film pattern in recent years. Due to the characteristics of the materials of molds and inks, residual inks on the cavities of mold and residual layers on the substrate are still a problem. To solve the problem, we present a concept for fabrication of hydrophobic nanostructures on the cavities of microstructures of the mold, which can effectively decrease the ink residing on the cavities of the mold during coating. First, the periodic nanopores are fabricated on the anodic aluminum oxide (AAO). Second, AAO membrane is employed as the template for fabricating nanostructures on the PC film by embossing. And then, by partial protrusion of the nano-structured PC film into the micro-holes of the mold, an array of protruded convex microstructures is formed. After that, polydimethylsiloxane (PDMS) mold is casted from the embossed PC film. The contact angle of nanostructures on the micro-cavities of PDMS mold is about 145°. Micro-patterns with no residual layers have been successfully transferred on the poly(ethylene terephthalate) (PET) substrate using a transfer stamping process with this PDMS mold.  相似文献   

6.
A novel Si-YBaCuO intermixing technique has been developed for patterning YBaCuO superconducting thin films on both insulating oxide substrates (MgO) and semiconductor substrates (Si). The electrical, structural, and interfacial properties of the Si-YBaCuO intermixed system have been studied using resistivity, x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Auger depth profiling measurements. The study showed that the reaction of Si with YBaCuO and formation of silicon oxides during a high temperature process destroyed superconductivity of the film and created an insulating film. On a MgO substrate, the patterning process was carried out by first patterning a silicon layer using photolithography or laser-direct-writing, followed by the deposition of YBaCuO film and annealing. For a silicon substrate, thin metal layers of Ag and Au were patterned as a buffer mask which defines the YBaCuO structures fabricated thereafter. Micron-sized (2-10 Μm) superconducting structures with zero resistance temperature above 77 K have been demonstrated. This technique has been used to fabricate current controlled HTS switches and interconnects.  相似文献   

7.
The excitation of leaky modes (LMs) and the continuous spectrum (CS) on a microstrip line at high frequencies from a delta-gap source is studied. The delta-gap source models a practical source or discontinuity on the line. It is shown that the current excited from the source exhibits spurious effects at high frequencies due to the excitation of the CS (radiation spectrum), which may or may not be dominated by a physical LM, depending on the frequency range and the substrate permittivity. In some cases, the spurious effects are due to a physical LM, while in other cases the effects are due to the excitation of one or more "residual-wave" (RW) currents, which have not been previously studied for open microstrip lines. There are two types of RW currents: a free-space type and a surface-wave type. Depending on the frequency and the structural parameters, either of these may be the more dominant. At certain frequencies, weakly attenuated high-order LMs may also be excited, in which case spurious effects are observed out to large distances from the source  相似文献   

8.
Plant‐derived phenolic compounds, rich in catechol and pyrogallol moieties, can form multifunctional coatings on various substrates following polymerization under mildly alkaline conditions. Despite many appealing features of such coatings, the difficulty to control polymerization of phenolic compounds spatially and temporally limits their number of potential applications. In this study, it is demonstrated that UV irradiation can trigger oxidative polymerization and deposition of plant‐derived phenolic compounds, which opens the possibility to create 2D gradients and patterns of polyphenol coatings and control this polymerization temporally. UV–vis spectroscopy, electrospray ionization mass spectrometry, and cyclic voltammetry analyses are used to investigate the UV‐induced polymerization of several plant‐derived phenolic compounds including pyrogallol, tannic acid, caffeic acid, and gallic acid. Formation of polyphenol coatings on polar and nonpolar substrates after UV irradiation has been studied using water contact angle measurements, atomic force microscopy, time of flight secondary ion mass spectrometry, and X‐ray photoelectron spectroscopy (XPS). The possibility to use UV‐light to accelerate polymerization of phenolic compounds and perform micropatterning can extend the scope of potential applications of the large class of structurally diverse plant‐derived phenolic compounds.  相似文献   

9.
We are developing an automatic captioning system for teleconsultation video teleconferencing (TC-VTC) in telemedicine, based on large vocabulary conversational speech recognition. In TC-VTC, doctors' speech contains a large number of infrequently used medical terms in spontaneous styles. Due to insufficiency of data, we adopted mixture language modeling, with models trained from several datasets of medical and nonmedical domains. This paper proposes novel modeling and estimation methods for the mixture language model (LM). Component LMs are trained from individual datasets, with class n-gram LMs trained from in-domain datasets and word n-gram LMs trained from out-of-domain datasets, and they are interpolated into a mixture LM. For class LMs, semantic categories are used for class definition on medical terms, names, and digits. The interpolation weights of a mixture LM are estimated by a greedy algorithm of forward weight adjustment (FWA). The proposed mixing of in-domain class LMs and out-of-domain word LMs, the semantic definitions of word classes, as well as the weight-estimation algorithm of FWA are effective on the TC-VTC task. As compared with using mixtures of word LMs with weights estimated by the conventional expectation-maximization algorithm, the proposed methods led to a 21% reduction of perplexity on test sets of five doctors, which translated into improvements of captioning accuracy.  相似文献   

10.
Leakage is a significant issue that prevents the widespread application of liquid metals (LMs) and an effective solution has not yet been developed. One potential solution is to use the high surface tension of LMs to encapsulate them in a porous material. However, it is challenging as it is difficult to infuse LMs into tiny pores. This study proposes a bottom-up strategy where LMs are doped with NdFeB@Ag particles, which are then magnetized to form a tight porous structure. This structure is robust and resistant to collapse under mechanical deformation. Therefore, LMs can be reliably immobilized within the pores between the particles, and a dynamic leakage-free state is achieved. The encapsulated LMs demonstrate excellent properties including a large latent heat of 153.46 J cm−3, high thermal conductivity of 35.62 W m−1 K−1, and enhanced electrical conductivity of 69.61%, which efficiently extends their functional scope and potential value.  相似文献   

11.
A two‐layer approach is reported for the formation of a thermally triggered reversible adhesive, involving a thermally‐responsive polymer matrix coated on tannic acid‐pretreated substrates/tissues. Interfacial adhesion originates from strong molecular interactions of tannic acid with both the polymer matrix and the substrate/tissue. The reversibility is due to a temperature‐triggered phase transition of the polymer matrix, leading to cohesive failure. Depending on different gelation mechanisms, the polymer forms a highly cohesive gel or soft solid upon either warming or cooling, leading to a strong adhesion to the tissues at physiological temperatures. Detachment of the adhesive is triggered by a temperature‐induced compromise of cohesive strength of the polymer matrix, by the opposite gel‐to‐sol transition. This facile, low‐cost, and modular design offers a reversible adhesive platform which is useful for biomedical and industrial applications.  相似文献   

12.
The development of flexible electronics (FEs) has rapidly accelerated in numerous fields due to their exceptional deformability, bending, and stretchability. Room-temperature gallium-based liquid metals (LMs) are considered as efficient conductive materials for FEs due to their outstanding electrical conductivity and intrinsic flexibility. Recently, 3D printing has become a promising technique for fabricating FEs. However, the poor printability due to high surface tension and fluidity offers huge challenges in the 3D printing of LMs. This review summarizes the effective strategies to address these challenges. It primarily focuses on three points: 1) how to improve the printability of LM and its wettability with the substrate, 2) how to select the appropriate printing method to improve the printing speed and ensure the resolution of printing structure, and 3) how to provide perfect encapsulation for LM-based FEs with 3D printing. Following a brief introduction, the mainstream printing technologies and recent developments in the 3D printing of LMs are provided, with an emphasis on the selection of printing method, improvement of printability, encapsulation, and conductivity activation. Then, the revolutionary changes attained after 3D printing of LMs are specifically focused upon. Finally, opinions and potential directions for this thriving discipline are explored.  相似文献   

13.
The exceptional mechanical properties of the byssus—the fibrous holdfast of mussels that provides underwater adhesion—have potential applications in medicine and technology. The catechol–Fe3+–catechol interaction underlies the unique properties of mussel byssus and has emerged as a tool for developing functional hybrid materials such as pH‐responsive, self‐healing gels. Herein, the construction of functional alginate (Alg) film on a solid substrate inspired by mussel byssus is reported. The approach consists of spin‐coating‐assisted deposition of Alg catechols onto a solid substrate and their subsequent crosslinking via catechol–Fe3+–catechol interactions. This yields robust and multilayered Alg films that are resistant to protein adsorption and suppress bacterial adhesion. This method can be used to create antibacterial films for coating implanted medical devices.  相似文献   

14.
Computer-controlled ink-jet assisted metallization of the grid pattern of solar cells with metallo-organic decomposition (MOD) silver inks offers a maskless alternative method to conventional photolithographic thin-film technology and screen-printing technology. This method can provide low-cost, fine-resolution reduction in process complexity by direct ink-jet patterning, avoidance of degradation of p-n junctions by firing at low temperature (350°C), and uniform line film on rough-surface solar cells (unpolished solar cells for low-cost purposes). The metallization process involves jet-printed metallo-organic inks, belt furnace firing, and thermal spiking. With titanium thin-film underlayer as an adhesion promoter and multilayer ink jet printing, solar cells of 8.08% average efficiency without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film metallized solar cells of the same lot  相似文献   

15.
文章介绍了两种移植和可控纳米沉积荧光粉颗粒和纳米铁电体颗粒的载体.第一种载体是一种可以悬浮和沉积合成的具有亚微米级尺寸大小的荧光粉颗粒的油墨.解决了该油墨的聚集和沉降问题,并发现该油墨具有良好的液流学性能,从而可用于印刷高分辨率的荧光粉.测量了相关的单个象素的阴极发光密度以评定这种丝网印刷油墨的可重复性.第二种载体是一种粘结剂,这种粘结剂不仅可以携带 30 μm 以及更大的尺寸的电致发光的荧光粉,还可以携带纳米铁电体颗粒.这种新型的粘结剂可应用于不需要额外的绝缘反射层的低造价的 EL 显示器.从衬底按要求将发射层剥下来就形成了柔性薄膜,将该薄膜置于两电极之间,仍可保持其电致发光的活性.该粘结剂薄膜可以很容易地印刷和定型制成显示屏.  相似文献   

16.
In order to apply cost effective and productive nano imprint technology to the TFT-LCD fabrication, problems owing to large patterning area have to be solved. In this works, large area UV nano imprint process was developed by using of collimated UV light and shadow masks. It was shown that complex patterns could be easily replicated on 300 mm × 400 mm substrate by a large mold which is fabricated by suggested step and repeat process. Because roll pressing and alignment technique are important steps in our process for large area nano imprint, these process steps were optimized. Also, as a key technology for enlargement of patterning area, the stitching technique was developed. The idea using a collimated UV light is used for pattern stitching in nano imprint process. Developed large area pattern fabrication technique could be applied to various applications such as TFT-LCD process or optical film fabrication extensively.  相似文献   

17.
The unique properties of solid particles make them a promising element of micro‐ and nanostructure technologies. Solid particles can be used as building blocks for micro and nanostructures, carriers of monomers, or catalysts. The possibility of patterning different kinds of particles on the same substrate opens the pathway for novel combinatorial designs and novel technologies. One of the examples of such technologies is the synthesis of peptide arrays with amino acid particles. This review examines the known methods of combinatorial particle patterning via static electrical and magnetic fields, laser radiation, patterning by synthesis, and particle patterning via chemically modified or microstructured surfaces.  相似文献   

18.
2D materials (2DMs), which can be produced by exfoliating bulk crystals of layered materials, display unique optical and electrical properties, making them attractive components for a wide range of technological applications. This review describes the most recent developments in the production of high‐quality 2DMs based inks using liquid‐phase exfoliation (LPE), combined with the patterning approaches, highlighting convenient and effective methods for generating materials and films with controlled thicknesses down to the atomic scale. Different processing strategies that can be employed to deposit the produced inks as patterns and functional thin‐films are introduced, by focusing on those that can be easily translated to the industrial scale such as coating, spraying, and various printing technologies. By providing insight into the multiscale analyses of numerous physical and chemical properties of these functional films and patterns, with a specific focus on their extraordinary electronic characteristics, this review offers the readers crucial information for a profound understanding of the fundamental properties of these patterned surfaces as the millstone toward the generation of novel multifunctional devices. Finally, the challenges and opportunities associated to the 2DMs' integration into working opto‐electronic (nano)devices is discussed.  相似文献   

19.
The “ligand induced electroless plating (LIEP) process” is a simple process to obtain localized metal plating onto flexible polymers such as poly(ethylene terephtalate) and polyvinylidene fluoride sheets. This generic and cost‐effective process, efficient on any common polymer surface, is based on the covalent grafting by the GraftFast process of a thin chelating polymer film, such as poly(acrylic acid), which can complex copper ions. The entrapped copper ions are then chemically reduced in situ and the resulting Cu0 species act as a seed layer for the electroless copper growth which, thus, starts inside the host polymer. The present work focuses on the application of the LIEP process to the patterning of localized metallic tracks via two simple lithographic methods. The first is based on a standard photolithography process using a positive photoresist masking to prevent the covalent grafting of PAA in designated areas of the polymer substrate. In the second, the patterning is performed by direct printing of the mask with a commercial laser printer. In both cases, the mask was lifted off before the copper electroless plating step, which provides ecological benefits, since only the amount of copper necessary for the metallic patterning is used.  相似文献   

20.
《Microelectronic Engineering》2007,84(5-8):864-867
We report on a micro-fabrication method based on micro-aspiration assisted lithography (MAAL). Unlike nanoimprint lithography where a mould is pressed into a resist layer spin coated on a substrate, MAAL uses aspiration forces to guide the resist material in the mould cavities. By suing this technique, the limit of capillary based lithography techniques has been extended. Double layer PDMS moulds were fabricated using multi-layer soft-lithography in which a micro-aspiration network could be introduced close to the pattern layer of the mould. As a result, high resolution patterning could be obtained with a UV curable resist. We also show the results of patterning of a thin layer of PDMS, nano-particles as well as agar gels. We have also provided a semi-quantitative analysis in order to understand the limitation of different approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号