首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic electrochemical transistors (OECTs) have exhibited promising performance as transducers and amplifiers of low potentials due to their exceptional transconductance, enabled by the volumetric charging of organic mixed ionic/electronic conductors (OMIECs) employed as the channel material. OECT performance in aqueous electrolytes as well as the OMIECs’ redox activity has spurred a myriad of studies employing OECTs as chemical transducers. However, the OECT's large (potentiometrically derived) transconductance is not fully leveraged in common approaches that directly conduct chemical reactions amperometrically within the OECT electrolyte with direct charge transfer between the analyte and the OMIEC, which results in sub-unity transduction of gate to drain current. Hence, amperometric OECTs do not truly display current gains in the traditional sense, falling short of the expected transistor performance. This study demonstrates an alternative device architecture that separates chemical transduction and amplification processes on two different electrochemical cells. This approach fully utilizes the OECT's large transconductance to achieve current gains of 103 and current modulations of four orders of magnitude. This transduction mechanism represents a general approach enabling high-gain chemical OECT transducers.  相似文献   

2.
Organic electrochemical transistors are bioelectronic devices that exploit the coupled nature of ionic and electronic fluxes to achieve superior transducing abilities compared to conventional organic field effect transistors. In particular, the operation of organic electrochemical transistors relies on a channel material capable of conducting both ionic and electronic charge carriers to ensure bulk electrochemical doping. This review explores the various types of organic semiconductors that are employed as channel materials, with a particular focus on the past 5 years, during which the transducing abilities of organic electrochemical transistors have witnessed an almost tenfold increase. Specifically, the structure–property relationships of the various channel materials employed are investigated, highlighting how device performance can be related to functionality at the molecular level. Finally, an outlook on the field is provided, in particular toward the design guidelines of future materials and the challenges ahead in the field.  相似文献   

3.
Conjugated polymers with mixed ionic and electronic transport are essential for developing the complexity and function of electrochemical devices. Current n-type materials have a narrow scope and low performance compared with their p-type counterparts, requiring new molecular design strategies. This work presents two naphthalene diimide-bithiophene (NDI-T2) copolymers functionalized with hybrid alkyl-glycol side chains, where the naphthalene diimide unit is segregated from the ethylene glycol (EG) units within the side chain by an alkyl spacer. Introduction of hydrophobic propyl and hexyl spacers is investigated as a strategy to minimize detrimental swelling close to the conjugated backbone and balance the mixed conduction properties of n-type materials in aqueous electrolytes. It is found that both polymers functionalized with alkyl spacers outperform their analogue bearing EG-only side chains in organic electrochemical transistors (OECTs). The presence of the alkyl spacers also leads to remarkable stability in OECTs, with no decrease in the ON current after 2 h of operation. Through this versatile side chain modification, this work provides a greater understanding of the structure-property relationships required for n-type OECT materials operating in aqueous media.  相似文献   

4.
Conjugated polymers that support mixed (electronic and ionic) conduction are in demand for applications spanning from bioelectronics to energy harvesting and storage. To design polymer mixed conductors for high‐performance electrochemical devices, relationships between the chemical structure, charge transport, and morphology must be established. A polymer series bearing the same p‐type conjugated backbone with increasing percentage of hydrophilic, ethylene glycol side chains is synthesized, and their performance in aqueous electrolyte gated organic electrochemical transistors (OECTs) is studied. By using device physics principles and electrochemical analyses, a direct relationship is found between the OECT performance and the balanced mixed conduction. While hydrophilic side chains are required to facilitate ion transport—thus enabling OECT operation—swelling of the polymer is not de facto beneficial for balancing mixed conduction. It is shown that heterogeneous water uptake disrupts the electronic conductivity of the film, leading to OECTs with lower transconductance and slower response times. The combination of in situ electrochemical and structural techniques shown here contributes to the establishment of the structure–property relations necessary to improve the performance of polymer mixed conductors and subsequently of OECTs.  相似文献   

5.
In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high-speed solid-state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X-ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X-ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC-based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.  相似文献   

6.
Currently, n-type small-molecule mixed ionic-electronic conductors remain less explored and their molecular design rules are not mature enough. Herein, two n-type glycolated imide-fused polycyclic aromatic hydrocarbons (IPAHs), d-gdiPDI and t-gdiPDI, are developed to probe the effects of molecular conformation on the electronic, electrochemical, morphological, and coupled ionic-electronic transport properties. It is found that the highly twisted scaffold in d-gdiPDI, compared to the nearly planar one of t-gdiPDI, has a strong positive effect on the charge storage properties and thus the performance of organic electrochemical transistors (OECTs). d-gdiPDI exhibits a volumetric capacitance of 657 F cm−3, obviously outperforming that of t-gdiPDI (261 F cm−3), which is the highest value reported to date for small-molecule OECT materials. Moreover, a high charge-storage capacity of up to 479 F g−1 is observed for d-gdiPDI. Arising from such high ionic-electronic coupling characteristic, d-gdiPDI-based OECTs present a ≈2 × times higher geometry-normalized transconductance (gm,norm) of 105.3 mS cm−1 relative to that of t-gdiPDI counterparts. Significantly, further application of d-gdiPDI in solid-electrolyte OECTs delivers a gm,norm of 142.4 mS cm−1. These findings indicate that IPAHs are very promising candidates for n-type small-molecule OECTs and highlight the superiority of twisting conformation manipulation in materials design toward high-performance electrochemical devices.  相似文献   

7.
Redox‐active organic molecules are intriguing candidates as active electrode materials for next‐generation rechargeable batteries due to their structural diversity, environmental friendliness, and solution‐phase preparation processes. Recently, a transition metal–organic coordination approach is exploited to construct high capacity anodes for lithium‐ion rechargeable batteries. Here, a family of transition metal–organic coordination complexes with terephthalate ligands is synthesized that exhibit reversible capacities above 1100 mA h g?1. The reaction mechanism to describe the multi‐electron redox processes is investigated at the molecular‐level via the synchrotron‐sourced X‐ray absorption spectroscopy and solid‐state NMR analyses. The spectroscopic studies reveal that the electrochemical process involves oxidation state changes of the transition metals followed by additional lithium insertion/extraction in the conjugated aromatic ligands. The combined approaches assisted by synthetic organic chemistry and solid‐state analysis provide mechanistic insights into excessive lithiation processes that have implications for the design of high‐performance anode materials.  相似文献   

8.
Electrocardiogram (ECG) mapping can provide vital information in sports training and cardiac disease diagnosis. However, most electronic devices for monitoring ECG signals need to use multiple long wires, which limit their wearability and conformability in practical applications, while wearable ECG mapping based on integrated sensor arrays has been rarely reported. Herein, ultra-flexible organic electrochemical transistor (OECT) arrays used for wearable ECG mapping on the skin surface above a human heart are presented. QRS complexes of ECG signals at different recording distances and directions relative to the heart are obtained. Furthermore, the ECG signals are successfully analyzed by the devices before and after exercise, indicating potential applications in some sports training and fitness scenarios. The OECT arrays that can conveniently monitor spacial ECG signals in the heart region may find niche applications in wearable electronics and healthcare products in the future.  相似文献   

9.
Organic electronic devices have gained immense popularity in the last 30 years owing to their increasing performance. Organic thin‐film transistors (OTFTs) are one of the basic organic electronic devices with potential industrial applications. Another class of devices called organic thermoelectric (OTE) materials can directly transform waste heat into usable electrical power without causing any pollution. p‐Type transistors outperform n‐type transistors because the latter requires a lower orbital energy level for efficient electron injection and stable electron transport under ambient conditions. Aromatic building blocks can be utilized in constructing n‐type semiconductors. Quinoidal compounds are another promising platform for optoelectronic applications because of their unique properties. Since their discovery in 1970s, quinoidal oligothiophene‐based n‐type semiconductors have drawn considerable attention as candidates for high‐performance n‐type semiconductors in OTFTs and OTEs. Herein, the development history of quinoidal oligothiophene‐based semiconductors is summarized, with a focus on the molecular design and the influence of structural modification on molecular packing and thus the device performance of the corresponding quinoidal oligothiophene‐based semiconductors. Insights on the potential of quinoidal oligothiophenes for high‐performance n‐type OTFTs and OTEs are also provided.  相似文献   

10.
The electronic processes occurring within the perovskite solar cells (PSCs) are strongly influenced by the nature of the organic A cations present within the inorganic framework. In this study, the impact of FA (CH(NH2)2+) and Cs+ cations on the intrinsic and interfacial properties in the FAPbBr3 and CsPbBr3 PSCs is investigated. The analysis of current density ( J SC) and photovoltage ( V OC) as a function of illumination intensity establishes that the interfacial charge transport is more rapid in FAPbBr3 devices. Small perturbation measurements including intensity modulated photocurrent and photovoltage spectroscopy are applied to explore the resistive and capacitive elements. Furthermore, electrochemical impedance spectroscopy measurements are found to correlate well with the photovoltaic characteristics of FAPbBr3 and CsPbBr3 PSCs. Overall, the in‐depth analysis of various phenomena occurring within the bromide PSCs allows to underline the working principle, which provides a key to optimize the device performance. The present protocol is not only valid for PSCs but can also be extended to devices based on alternative light harvesters.  相似文献   

11.
π‐conjugated molecular organics such as rubrene, Alq3, fullerene, and PCBM have been used extensively over the last few decades in numerous organic electronic devices, including solar cells, thin‐film transistors, and large‐area, low‐cost flexible displays. Rubrene and Alq3, have emerged as promising platforms for spin‐based classical and quantum information processing, which has triggered significant research activity in the relatively new area of organic spintronics. Synthesis of these materials in a nanowire geometry, with feature sizes in the sub‐100 nm regime, is desirable as it often enhances device performance and is essential for development of high‐density molecular electronic devices. However, fabrication techniques that meet this stringent size constraint are still largely underdeveloped. Here, a novel, versatile, and reagentless method that enables growth of nanowire arrays of the above‐mentioned organics in the cylindrical nanopores of anodic aluminum oxide (AAO) templates is demonstrated. This method 1) allows synthesis of high‐density organic nanowire arrays on arbitrary substrates, 2) provides electrical access to the nanowire arrays, 3) offers tunability of the array geometry in a range overlapping with the relevant physical length scales of many organic devices, and 4) can potentially be extended to synthesize axially and radially heterostructured organic nanowires. Thus prepared nanowires are characterized extensively with an aim to identify their potential applications in diverse areas such as organic optoelectronics, photovoltaics, molecular nanoelectronics, and spintronics.  相似文献   

12.
13.
Organic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium‐ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte‐mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance.  相似文献   

14.
Charge carrier injection and transport in polymer light‐emitting diodes (PLEDs) is strongly limited by the energy level offset at organic/(in)organic interfaces and the mismatch in electron and hole mobilities. Herein, these limitations are overcome via electrochemical doping of a light‐emitting polymer. Less than 1 wt% of doping agent is enough to effectively tune charge injection and balance and hence significantly improve PLED performance. For thick single‐layer (1.2 µm) PLEDs, dramatic reductions in current and luminance turn‐on voltages (VJ = 11.6 V from 20.0 V and VL = 12.7 V from 19.8 V with/without doping) accompanied by reduced efficiency roll‐off are observed. For thinner (<100 nm) PLEDs, electrochemical doping removes a thickness dependence on VJ and VL, enabling homogeneous electroluminescence emission in large‐area doped devices. Such efficient charge injection and balance properties achieved in doped PLEDs are attributed to a strong electrochemical interaction between the polymer and the doping agents, which is probed by in situ electric‐field‐dependent Raman spectroscopy combined with further electrical and energetic analysis. This approach to control charge injection and balance in solution‐processed PLEDs by low electrochemical doping provides a simple yet feasible strategy for developing high‐quality and efficient lighting applications that are fully compatible with printing technologies.  相似文献   

15.
Biological environments use ions in charge transport for information transmission. The properties of mixed electronic and ionic conductivity in organic materials make them ideal candidates to transduce physiological information into electronically processable signals. A device proven to be highly successful in measuring such information is the organic electrochemical transistor (OECT). Previous electrophysiological measurements performed using OECTs show superior signal-to-noise ratios than electrodes at low frequencies. Subsequent development has significantly improved critical performance parameters such as transconductance and response time. Here, interdigitated-electrode OECTs are fabricated on flexible substrates, with one such state-of-the-art device achieving a peak transconductance of 139 mS with a 138 µs response time. The devices are implemented into an array with interconnects suitable for micro-electrocorticographic application and eight architecture variations are compared. The two best-performing arrays are subject to the full electrophysiological spectrum using prerecorded signals. With frequency filtering, kHz-scale frequencies with 10 µV-scale voltages are resolved. This is supported by a novel quantification of the noise, which compares the gate voltage input and drain current output. These results demonstrate that high-performance OECTs can resolve the full electrophysiological spectrum and suggest that superior signal-to-noise ratios could be achieved in high frequency measurements of multiunit activity.  相似文献   

16.
Conventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long-range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desirable electronic coupling strength and charge transport, their integration into large-area optoelectronic devices remains a challenge. Here, monolithic integrated triclinic crystal rubrene light-emitting diodes (LEDs) are presented using epitaxial growth with functional additives being engineered into the films. Superior charge transport, excellent operational and long-term stability in these light-emitting devices are demonstrated. By comparing two rubrene-based LEDs, one made from amorphous and one from crystalline rubrene layers, their exciton dynamics are estimated using comprehensive transient electroluminescence simulation. The crystalline LEDs show high triplet-triplet annihilation (TTA) rate constant similar to TTA rate constant of triclinic single crystals determined by optical spectroscopy. At the same time, the crystalline phase enhances drastically the singlet-fission and bimolecular annihilation rates, which reduces the overall performance of the LED compared to its amorphous counterpart. Finally, an outlook on the potential applications of rubrene and/or its derivatives crystalline films are provided for enhancing the performance of organic and hybrid optoelectronic devices.  相似文献   

17.
Solution-processed organic crystals are important in field-effect transistors because of their highly ordered molecular packing and ease of device fabrication. For practical applications, the patterning of organic crystal transistor arrays is critical. However, uniformity, which concerns the variation in electrical performance among devices fabricated simultaneously on the same substrate, is a common consideration in the commercial applications of the solution-processed organic crystal transistor arrays. Here, a simple approach for fabricating field-effect transistor arrays based on organic plate-like crystals is reported. Through this method, a direct spin-coating process from a mixture solution of organic semiconductor and polymer dielectric can produce organic plate-like crystals. The grain size of the crystals is observed to be hundreds of micrometers. By controlling the concentrations of the active materials, the transistor arrays exhibit high uniformity and good device performance. The results presented in this work promise that this approach is a comparable technology to hydrogenated amorphous silicon-based FETs and is a great candidate for practical applications in electronic devices.  相似文献   

18.
Organic electrochemical transistors (OECTs) operate at very low voltages, transduce ions into electronic signals, and reach extremely large transconductance values, making them ideally suited for bio-sensing applications. However, despite their promising performance, the dependence of their maximum transconductance on device geometry and applied voltages are not correctly captured by current capacitive device models. Here, current scaling laws are revised in the light of a recently developed 2D device model that adequately accounts for drift and diffusion of ions inside the polymer channel. It is shown that the maximum transconductance of the devices is found at the transition between the depletion and accumulation region of the transistors, which as well provides an explanation for the observed shift of the transconductance peak with geometric dimensions and the drain potential. Overall, the results provide a better understanding of the working mechanisms of OECTs, and facilitate design rules to optimize OECT performance further.  相似文献   

19.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

20.
Organic electrochemical transistors (OECTs) are the building blocks of biosensors, neuromorphic devices, and complementary circuits. One rule in the materials design for OECTs is the inclusion of a hydrophilic component in the chemical structure to enable ion transport in the film. Here, it is shown that the ladder-type, side-chain free polymer poly(benzimidazobenzophenanthroline) (BBL) performs significantly better in OECTs than the donor–acceptor type copolymer bearing hydrophilic ethylene glycol side chains (P-90). A combination of electrochemical techniques reveals that BBL exhibits a more efficient ion-to-electron coupling and higher OECT mobility than P-90. In situ atomic force microscopy scans evidence that BBL, which swells negligibly in electrolytes, undergoes a drastic and permanent change in morphology upon electrochemical doping. In contrast, P-90 substantially swells when immersed in electrolytes and shows moderate morphology changes induced by dopant ions. Ex situ grazing incidence wide-angle X-ray scattering suggests that the particular packing of BBL crystallites is minimally affected after doping, in contrast to P-90. BBL's ability to show exceptional mixed transport is due to the crystallites’ connectivity, which resists water uptake. This side chain-free route for the design of mixed conductors could bring the n-type OECT performance closer to the bar set by their p-type counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号