首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometric multiplication development of MXene has promoted it to become a star material in numerous applications including, but not limited to, energy storage. It is found that pore structure modulation engineering can improve the inherent properties of MXene, in turn significantly enhancing its electrochemical performance. However, most of the current works have focused on exploring the structure-effective relationships of the single-scale pore structure regulation of MXene. Inspired by Murray's law from nature where a highly graded structure of the organisms is discovered and used to achieve effective diffusion and maximize mass transfer, a hierarchically interconnected porous MXene electrode across micro-meso-macroporous is constructed. This MXene-based electrode provides large amounts of active sites while greatly shortening the ion diffusion channel. Finally, the zinc ion microcapacitor based on this MXene electrode exhibits an ultrahigh area-specific capacitance up to 410 mF cm−2 and an energy density up to 103 µWh cm−2 at a power density of 2100 µW cm−2. The areal energy density outperforms the currently reported zinc ion microcapacitors. This study supports an effective strategy for electrode materials (including but not limited to MXene) to achieve ultra-short ion diffusion channels and maximum transport efficiency for next-generation high-performance energy storage.  相似文献   

2.
While state-of-the-art skin-adhering fibrous electrodes have distinct benefits in personal wearable bioelectronics, considerable challenges persist in the production of fibrous-based soft conductive biosensing nanomaterials and their integration into efficient multisensing platforms. Here, an electrochemical-electrophysiological multimodal biosensing patch based on MXene/fluoropolymer nanofiber-derived hierarchical porous TiO2 nanocatalyst interconnected 3D fibrous carbon nanohybrid electrodes is reported. The nanohybrid electrode is produced via a one-step laser carbonaceous thermal oxidation, resulting in excellent elctroconductivity (sheet resistance = 15.6 Ω sq−1), rich active edges for effective electron transmission, and abundant support for enzyme immobilization. The features are attributed to three synergistic effects: i) conductivity of the interior, unoxidized MXene layers, ii) quick heterogeneous electron transmission of the exterior TiO2 nanoparticles, and iii) the porous disordered carbon's electron “bridge” effects. Based on the foregoing, the nanohybrid modified biosensing patch integrated into textile is demonstrated to be capable of simultaneously and precisely monitoring sweat glucose with pH adjustment (sensitivity of 77.12 µA mm −1 cm−2 within physiological concentrations of 0.01–2 × 10−3 m ) and electrocardiogram signals (signal-to-noise ratio = 37.63 dB). This novel approach paves the way for controlled investigations of the nanohybrid, for several functionalization and design options, and for the mass manufacturing capabilities required in real-world applications.  相似文献   

3.
Development of multifunctional electrocatalysts with high efficiency and stability is of great interest in recent energy conversion technologies. Herein, a novel heteroelectrocatalyst of molecular iron complex (FeMC)-carbide MXene (Mo2TiC2Tx) uniformly embedded in a 3D graphene-based hierarchical network (GrH) is rationally designed. The coexistence of FeMC and MXene with their unique interactions triggers optimum electronic properties, rich multiple active sites, and favorite free adsorption energy for excellent trifunctional catalytic activities. Meanwhile, the highly porous GrH effectively promotes a multichannel architecture for charge transfer and gas/ion diffusion to improve stability. Therefore, the FeMC–MXene/GrH results in superb performances towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The practical tests indicate that Zn/Al–air batteries derived from FeMC–MXene/GrH cathodic electrodes produce high power densities of 165.6 and 172.7 mW cm−2, respectively. Impressively, the liquid-state Zn–air battery delivers excellent cycling stability of over 1100 h. In addition, the alkaline water electrolyzer induces a low cell voltage of 1.55 V at 10 mA cm−2 and 1.86 V at 0.4 A cm−2 in 30 wt.% KOH at 80 °C, surpassing recent reports. The achievements suggest an exciting multifunctional electrocatalyst for electrochemical energy applications.  相似文献   

4.
2D MXene materials are of considerable interest for future energy storage. A MXene film could be used as an effective flexible supercapacitor electrode due to its flexibility and, more importantly, its high specific capacitance. However, although it has excellent electronic conductivity, sluggish ionic kinetics within the MXene film becomes a fundamental limitation to the electrochemical performance. To compensate for the relative deficiency, MXene films are frequently reduced to several micrometer dimensions with low mass loading (<1 mg cm?2), to the point of detriment of areal performance and commercial value. Herein, for the first time, the design of a 3D porous MXene/bacterial cellulose (BC) self‐supporting film is reported for ultrahigh capacitance performance (416 F g?1, 2084 mF cm?2) with outstanding mechanical properties and high flexibility, even when the MXene loading reaches 5 mg cm?2. The highly interconnected MXene/BC network enables both excellent electron and ion transport channel. Additionally, a maximum energy density of 252 µWh cm?2 is achieved in an asymmetric supercapacitor, higher than that of all ever‐reported MXene‐based supercapacitors. This work exploits a simple route for assembling 2D MXene materials into 3D porous films as state‐of‐the‐art electrodes for high performance energy storage devices.  相似文献   

5.
Even though atomically thin 2D semiconductors have shown great potential for next-generation electronics, the low carrier mobility caused by poor metal–semiconductor contacts and the inherently high density of impurity scatterings remains a critical issue. Herein, high-mobility field-effect transistors (FETs) by introducing few-layer PdSe2 flakes as channels is achieved, via directly depositing semimetal antimony (Sb) as drain–source electrodes. The formation of clean and defect-free van der Waals (vdW) stackings at the Sb–PdSe2 heterointerfaces boosts the room temperature transport characteristics, including low contact resistance down to 0.55 kΩ µm, high on-current density reaching 96 µA µm−1, and high electron mobility of 383 cm2 V−1 s−1. Furthermore, metal–insulator transition (MIT) is observed in the PdSe2 FETs with and without hexagonal boron nitride (h–BN) as buffer layers. However, the layered h–BN/PdSe2 vdW stacking eliminates the interference of interfacial disorders, and thus the corresponding device exhibits a lower MIT crossing point, larger mobility exponent of γ ∼ 1.73, significantly decreased hopping parameter of T0, and ultrahigh electron mobility of 2,184 cm2 V−1 s−1 at 10 K. These findings are expected to be significant for developing high mobility 2D-based quantum devices.  相似文献   

6.
Insufficient and unstable energy output is the bottleneck issue radically restricting the application of micro-supercapacitors (MSCs). Herein, an interlayer atom injection strategy that can anchor low-valence Zn atoms (Znδ+, 0 < δ <2) on O-terminals of Ti3C2Tx (MXene) flakes within the MXene/silver-nanowires hybrid cathode of symmetric MSCs is first presented. Combining the polyacrylamide/ZnCl2 hydrogel electrolyte rich in Cl and Zn2+ ions, the matched Znδ+/Zn2+ (−0.76 V vs SHE) and Ag/AgCl (0.23 V vs SHE), redox couples between the symmetrical electrodes are activated to offer faradaic charge storage beside ions-intercalation involved pseudocapacitance. Thus, a battery-type voltage plateau (≈0.9 V) appears in the discharge curve of a fabricated pseudo-symmetric micro-redox capacitor, simultaneously achieving energy density enhancement (117 µWh cm−2 at 0.5 mA cm−2) and substantially improved power output stability (46% of the energy from the plateau region) relative to that before activation (98 µWh cm−2 without voltage platform). The work provides a fire-new strategy to overcome the performance bottlenecks confronting conventional MSCs.  相似文献   

7.
2D MXenes have emerged as promising supercapacitor electrode materials due to their metallic conductivity, pseudo-capacitive mechanism, and high density. However, layer-restacking is a bottleneck that restrains their ionic kinetics and active site exposure. Herein, a carbon dots-intercalated strategy is proposed to fabricate flexible MXene film electrodes with both large ion-accessible active surfaces and high density through gelation of calcium alginate (CA) within the MXene nanosheets followed by carbonization. The formation of CA hydrogel within the MXene nanosheets accompanied by evaporative drying endow the MXene/CA film with high density. In the carbonization process, the CA-derived carbon dots can intercalate into the MXene nanosheets, increasing the interlayer spacing and promoting the electrolytic diffusion inside the MXene film. Consequently, the carbon dots-intercalated MXene films exhibit high volumetric capacitance (1244.6 F cm−3 at 1 A g−1), superior rate capability (662.5 F cm−3 at 1000 A g−1), and excellent cycling stability (93.5% capacitance retention after 30 000 cycles) in 3 m H2SO4. Additionally, an all-solid-state symmetric supercapacitor based on the carbon dots-intercalated MXene film achieves a high volumetric energy density of 27.2 Wh L−1. This study provides a simple yet efficient strategy to construct high-volumetric performance MXene film electrodes for advanced supercapacitors.  相似文献   

8.
A challenging task is to promote Ru atom economy and simultaneously alleviate Ru dissolution during the hydrogen evolution reaction (HER) process. Herein, Ru nanograins (≈1.7 nm in size) uniformly grown on 1T-MoS2 lace-decorated Ti3C2Tx MXene sheets (Ru@1T-MoS2-MXene) are successfully synthesized with three types of interfaces (Ru/MoS2, Ru/MXene, and MoS2/MXene). It gives high mass activity of 0.79 mA µgRu−1 at an overpotential of 100 mV, which is ≈36 times that of Ru NPs. It also has a much smaller Ru dissolution rate (9 ng h−1), accounting for 22% of the rate for Ru NPs. Electrochemical tests, scanning electrochemical microscopy measurements combined with DFT calculations disclose the role of triple interface optimization in improved activity and stability. First, 2D MoS2 and MXene can well disperse and stabilize Ru grains, giving larger electrochemical active area. Then, Ru/MoS2 interfaces weakening H* adsorption energy and Ru/MXene interfaces enhancing electrical conductivity, can efficiently improve the activity. Next, MoS2/MXene interfaces can protect MXene sheet edges from oxidation and keep 1T-MoS2 phase stability during the long-term catalytic process. Meanwhile, Ru@1T-MoS2-MXene also displays superior activity and stability in neutral and alkaline media. This work provides a multiple-interface optimization route to develop high-efficiency and durable pH-universal Ru-based HER electrocatalysts.  相似文献   

9.
Two donor–acceptor (D–A) polymers are obtained by coupling difluoro- and dichloro-substituted forms of the electron-deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1 are obtained from the chlorinated and fluorinated polymers with N-DMBI, respectively, and 12.4 and 2.4 S cm−1 are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop-cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0  µ W m−1 K−2, respectively. Doping of PClClTVT with N-DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N-DMBI as dopant remained up to 4.9 S m−1 after 222 days in the air, the longest for an n-doped polymer stored in air, with a thermoelectric power factor of 9.3  µ W m−1 K−2. However, the conductivity of PFClTVT-based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X-ray scattering and atomic force microscopy.  相似文献   

10.
Two-dimensional transition metal carbides and nitrides (MXenes) show tremendous potential for optoelectronic devices due to their excellent electronic properties. Here, a high-performance ultraviolet photodetector based on TiO2 nanorod arrays/Ti3C2Tx MXene van der Waals (vdW) Schottky junction by all-solution process technique is reported. The Ti3C2Tx MXene modulated by the Au electrode increases its work function from 4.41 to 5.14 eV to form a hole transport layer. Complemented by the dangling bond-free surface of Ti3C2Tx, the Fermi-level pinning effect is suppressed and the electric-field strength of the Schottky junction is enhanced, which promotes charge separation and transport. After applying a bias of −1.5 V, the photovoltaic effect is favorably reinforced, while the hole-trapping mechanism (between TiO2 and oxygen) and reverse pyroelectric effect are largely eliminated. As a result, the responsivity and specific detectivity of the device with FTO/TiO2 nanorod arrays/Ti3C2Tx/Au structure reach 1.95 × 105 mA W−1 and 4.3 × 1013 cm Hz1/2 W−1 (370 nm, 65 mW cm−2), respectively. This work provides an effective approach to enhance the performance of photodetectors by forming the vdW Schottky junction and choosing metal electrodes to modulate MXene as a suitable charge transport layer.  相似文献   

11.
Development of flexible thermoelectric devices offers exciting opportunities for wearable applications in consumer electronics, healthcare, human–machine interface, etc. Despite the increased interests and efforts in nanotechnology-enabled flexible thermoelectrics, translating the superior properties of thermoelectric materials from nanoscale to macroscale and reducing the manufacturing costs at the device level remain a major challenge. Here, an economic and scalable inkjet printing method is reported to fabricate high-performance flexible thermoelectric devices. A general templated-directed chemical transformation process is employed to synthesize several types of 1D metal chalcogenide nanowires (e.g., Ag2Te, Cu7Te4, and Bi2Te2.7Se0.3). These nanowires are made into inks suitable for inkjet printing by dispersing them in ethanol without any additives. As a showcase for thermoelectric applications, fully inkjet-printed Ag2Te-based flexible films and devices are prepared. The printed films exhibit a power factor of 493.8 µW m−1 K−2 at 400 K and the printed devices demonstrate a maximum power density of 0.9 µW cm−2 K−2, both of which are significantly higher than those reported in state-of-the-art inkjet-printed thermoelectrics. The protocols of metal chalcogenide ink formulations, as well as printing are general and extendable to a wider range of material systems, suggesting the great potential of this printing platform for scalable manufacturing of next-generation, high-performance flexible thermoelectric devices.  相似文献   

12.
Textile-based generators that can convert low-grade energy from the human body or environment into sustainable electricity have generated immense scientific interest in self-powered wearable applications. However, their low power density and environmental suitability have extremely restricted their portable applications in complex and mutable environments. Herein, an asymmetric sandwich structure between molybdenum disulfide (MoS2)-carbonized silks (MCs) and MoS2/MXene–Cottons (MMCs) to construct efficient thermo–hydroelectric generators (THEGs) that synergistically harvest heat-moisture energy to generate considerable electricity is rationally designed. Notably, the large surface area of MoS2/MXene van der Waals heterojunctions (vdWhs) enables efficient charge collection, and the vertical MoS2 nanosheet arrays supply abundant nanochannels for a highly efficient hydration effect, generating an output power density of 32.26 µW cm−2 after wetting with deionized water. Combined with the sensitive temperature recognition ability with a Seebeck coefficient of 23.5 µV K−1, the application possibilities of these prepared THEGs in the mutual conversion of fingertip temperature/language, and the monitoring of the human physiological state is foresee.  相似文献   

13.
Assembly of 2D MXene sheets into a 3D macroscopic architecture is highly desirable to overcome the severe restacking problem of 2D MXene sheets and develop MXene‐based functional materials. However, unlike graphene, 3D MXene macroassembly directly from the individual 2D sheets is hard to achieve for the intrinsic property of MXene. Here a new gelation method is reported to prepare a 3D structured hydrogel from 2D MXene sheets that is assisted by graphene oxide and a suitable reductant. As a supercapacitor electrode, the hydrogel delivers a superb capacitance up to 370 F g?1 at 5 A g?1, and more promisingly, demonstrates an exceptionally high rate performance with the capacitance of 165 F g?1 even at 1000 A g?1. Moreover, using controllable drying processes, MXene hydrogels are transformed into different monoliths with structures ranging from a loosely organized porous aerogel to a dense solid. As a result, a 3D porous MXene aerogel shows excellent adsorption capacity to simultaneously remove various classes of organic liquids and heavy metal ions while the dense solid has excellent mechanical performance with a high Young's modulus and hardness.  相似文献   

14.
Semiconductors based on Bi element show large attenuation coefficients to X-ray photons and have been recognized as candidates for X-ray detectors. However, the application of stable Bi-based oxide materials to X-ray detectors has been rarely investigated. In this research, the X-ray response of a BiVO4 pellet has been studied. It has been found that the BiVO4 pellet has a large resistivity of 1.3 × 1012 Ω cm, negligible current drift of 6.18 × 10−8 nA cm−1 s−1 V−1 under electrical bias and mobility lifetime product, µτ, of 1.75 × 10−4 cm2 V−1, which renders the pellet with an X-ray sensitivity of 241.3 µC Gyair−1 cm−2 and a detection limit of 62 nGyair s−1 under 40 KVp X-ray illumination and 40 V bias voltage. The BiVO4 pellet also shows operational stability under steady X-ray illumination with total dose of 2.01 Gyair, equal to the dose of 20 000 medical chest X-ray inspections. This research reveals the potential application of BiVO4 in X-ray detection devices and inspires further research in this area.  相似文献   

15.
2D MXene materials have attracted intensive attention in energy storage application. However, MXene usually undergoes serious face-to-face restacking and inferior stability, significantly preventing its further commercial application. Herein, to suppress the oxidation and self-restacking of MXene, an efficient and fast self-assembly route to prepare a 3D porous oxidation-resistant MXene/graphene (PMG) composite with the assistance of an in situ sacrificial metallic zinc template is demonstrated. The self-assembled 3D porous architecture can effectively prevent the oxidation of MXene layers with no evident variation in electrical conductivity in air at room temperature after two months, guaranteeing outstanding electrical conductivity and abundant electrochemical active sites accessible to electrolyte ions. Consequently, the PMG-5 electrode possesses a striking specific capacitance of 393 F g−1, superb rate performance (32.7% at 10 V s−1), and outstanding cycling stability. Furthermore, the as-assembled asymmetric supercapacitor possesses a pronounced energy density of 50.8 Wh kg−1 and remarkable cycling stability with a 4.3% deterioration of specific capacitance after 10 000 cycles. This work paves a new avenue to solve the two long-standing significant challenges of MXene in the future.  相似文献   

16.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   

17.
Sensitivity and detection limit of X-ray detectors are crucial for security checks, medical diagnoses, and industrial inspections. In this study, it is reported that introducing some cations containing lone-pair electrons is beneficial for enhancing the Compton scattering effect and thus improving X-ray detection performance. As an example, SnTe3O8 is selected and grown as a novel high-temperature X-ray detection crystal. Because of the high resistivity of 2 × 1014 Ω cm and high mobility lifetime product of 3.22 × 10−4 cm2 V−1, SnTe3O8 X-ray detector exhibits a high sensitivity of 436 µC Gyair−1 cm−2 under 120 keV hard X-ray, a low dark current drift of 2.44 × 10−9 nA cm−1 s−1 V−1 and a record low detection limit of 8.19 nGyair s−1 among all oxide X-ray detectors. Furthermore, the high-temperature sensitivity of SnTe3O8 X-ray detector is enhanced to 617 µC Gyair−1 cm−2 at 175 °C, which is ≈31 times larger than that of the commercial α-Se. The high thermal stability and stable high-temperature sensitivity of SnTe3O8 single crystal X-ray detectors have potential applications in high-temperature environments. The results not only provide an excellent high-temperature X-ray detection crystal but also propose an effective method to explore X-ray detector materials with excellent performances.  相似文献   

18.
To go beyond polyethylene oxide in lithium metal batteries, a hybrid polymer/oligomer cell design is presented, where an ester oligomer provides high ionic conductivity of 0.2 mS cm−1 at 40 °C within thicker composite cathodes with active mass loadings of up to 11 mg cm−2 (LiNbO3-coated) LiNi0.6Mn0.2Co0.2 (NMC622), while a 30 µm thin scaffold-supported polymer electrolyte affords mechanical stability. Corresponding discharge capacities of the hybrid cells exceed 170 mAh g−1 (11 mg cm−2) or 160 mAh g−1 (6 mg cm−2) at rates of either 0.1 or 0.25 C. Multilayer pouch cells are projected to enable energy densities of 235 Wh L−1 (6 mg cm−2) and even up to 356 Wh L−1 (11 mg cm−2), clearly superior to other reported polymer-based cell designs. Polyester electrolytes are environmentally benign and safer compared to common liquid electrolytes, while the straightforward synthesis and affordability of precursors render hybrid polyester electrolytes suitable candidates for future application in solid-state lithium metal batteries.  相似文献   

19.
MXenes, 2D transition metal carbides, and nitrides have attracted tremendous interest because of their metallic conductivity, solution processability, and excellent merits in energy storage and other applications. However, the pristine MXene films often suffer from poor ambient stability and mechanical properties that stem from their polar terminal groups and weak interlayer interactions. Here, a heteroatom doping strategy is developed to tailor the surface functionalities of MXene, followed by the addition of large-sized reduced graphene oxide (rGO) as conductive additives to achieve a scalable production of S, N-MXene/rGO (SNMG-40) hybrid film with high mechanical strength ( ≈ 45 MPa) and energy storage properties (698.5 F cm−3). Notably, the SNMG-40 film also demonstrates long-term cycling stability ( ≈ 98% capacitance retention after 30 000 cycles), which can be maintained under ambient condition or immersed in H2SO4 electrolyte for more than 100 days. The asymmetric supercapacitor (aMGSC) based on SNMG-40 film shows an ultrahigh energy density of 22.3 Wh kg−1, which is much higher than those previously reported MXene-based materials. Moreover, the aMGSC also provides excellent mechanical durability under different deformation conditions. Thus, this strategy makes MXene materials more competitive for real-world applications such as flexible electronics and electromagnetic interference shielding.  相似文献   

20.
Realizing long cycling stability under a high sulfur loading is an essential requirement for the practical use of lithium–sulfur (Li–S) batteries. Here, a lamellar aerogel composed of Ti3C2Tx MXene/carbon nanotube (CNT) sandwiches is prepared by unidirectional freeze-drying to boost the cycling stability of high sulfur loading batteries. The produced materials are denoted parallel-aligned MXene/CNT (PA-MXene/CNT) due to the unique parallel-aligned structure. The lamellae of MXene/CNT/MXene sandwich form multiple physical barriers, coupled with chemical trapping and catalytic activity of MXenes, effectively suppressing lithium polysulfide (LiPS) shuttling under high sulfur loading, and more importantly, substantially improving the LiPS confinement ability of 3D hosts free of micro- and mesopores. The assembled Li–S battery delivers a high capacity of 712 mAh g−1 with a sulfur loading of 7 mg cm−2, and a superior cycling stability with 0.025% capacity decay per cycle over 800 cycles at 0.5 C. Even with sulfur loading of 10 mg cm−2, a high areal capacity of above 6 mAh cm−2 is obtained after 300 cycles. This work presents a typical example for the rational design of a high sulfur loading host, which is critical for the practical use of Li–S batteries  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号