首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Shape-programmable soft materials that exhibit integrated multifunctional shape manipulations, including reprogrammable, untethered, fast, and reversible shape transformation and locking, are highly desirable for a plethora of applications, including soft robotics, morphing structures, and biomedical devices. Despite recent progress, it remains challenging to achieve multiple shape manipulations in one material system. Here, a novel magnetic shape memory polymer composite is reported to achieve this. The composite consists of two types of magnetic particles in an amorphous shape memory polymer matrix. The matrix softens via magnetic inductive heating of low-coercivity particles, and high-remanence particles with reprogrammable magnetization profiles drive the rapid and reversible shape change under actuation magnetic fields. Once cooled, the actuated shape can be locked. Additionally, varying the particle loadings for heating enables sequential actuation. The integrated multifunctional shape manipulations are further exploited for applications including soft magnetic grippers with large grabbing force, reconfigurable antennas, and sequential logic for computing.  相似文献   

2.
3.
李发长  李一  柳学全  贾成厂  李楠  李金普  霍静 《功能材料》2012,43(15):2031-2034,2039
研究了磷化工艺对铁基软磁复合材料电磁性能的影响。XRD、SEM、EDS分析和元素面分布结果表明,合适的磷化工艺能在铁粉表面生成1层很薄的非晶或纳米晶结构磷酸盐,并且包覆完整均匀。磁性能测量结果表明,室温条件下用0.01g/mL磷酸对铁粉进行磷化30min,所得到的磷化铁粉磁芯具有优异的综合电磁性能。随着磷酸浓度的增大,磷化时间的增长和磷化温度的提高,软磁复合材料磁芯的电阻率增大,中高频磁损耗不断降低,同时磁导率也有一定程度的降低。  相似文献   

4.
5.
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open‐mesh shaped ultrathin deformable heaters, sensors of single‐crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon‐black‐doped liquid‐crystal elastomer (LCE‐CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE‐CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.  相似文献   

6.
Optical components made fully or partially from reconfigurable, stimuli‐responsive, soft solids or fluids—collectively referred to as soft photonics—are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano‐ and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics.  相似文献   

7.
介绍了大雁矿区特软岩层巷道成型新技术,包括定向断裂爆破技术的机理、爆破参数,以及大雁矿区特软岩层条件下实施定向断裂爆破的技术关键和注意事项。应用该技术不仅提高了巷道成型质量、节约了材料,而且保护了围岩稳定,对软岩巷道维护有重要作用。  相似文献   

8.
9.
10.
Abstract

In this article, we review the applications of a novel theory (Ohshima 2009 Sci. Technol. Adv. Mater. 10 063001) to the analysis of electrokinetic data for various soft particles, that is, particles covered with an ion-permeable surface layer of polyelectrolytes. Soft particles discussed in this review include various biological cells and hydrogel-coated particles as a model of biological cells. Cellular transformations increase the concentration of sialic acid of glycoproteins and are associated with blocked biosynthesis of glycolipids and aberrant expression of the developmentally programmed biosynthetic pathway. The change in shape or biological function of cells may affect their surface properties and can be detected by electrokinetic measurements. The experimental results were analyzed with Ohshima’s electrokinetic formula for soft particles and soft surfaces. As a model system, hydrogel surfaces that mimic biological surfaces were also prepared and their surface properties were studied.  相似文献   

11.
Materials capable of actuation through remote stimuli are crucial for untethering soft robotic systems from hardware for powering and control. Fluidic actuation is one of the most applied and versatile actuation strategies in soft robotics. Here, the first macroscale soft fluidic actuator is derived that operates remotely powered and controlled by light through a plasmonically induced phase transition in an elastomeric constraint. A multiphase assembly of a liquid layer of concentrated gold nanoparticles in a silicone or styrene–ethylene–butylene–styrene elastic pocket forms the actuator. Upon laser excitation, the nanoparticles convert light of specific wavelength into heat and initiate a liquid‐to‐gas phase transition. The related pressure increase inflates the elastomers in response to laser wavelength, intensity, direction, and on–off pulses. During laser‐off periods, heating halts and condensation of the gas phase renders the actuation reversible. The versatile multiphase materials actuate—like soft “steam engines”—a variety of soft robotic structures (soft valve, pnue‐net structure, crawling robot, pump) and are capable of operating in different environments (air, water, biological tissue) in a single configuration. Tailored toward the near‐infrared window of biological tissue, the structures actuate also through animal tissue for potential medical soft robotic applications.  相似文献   

12.
利用单铜辊甩带法制备Fe(86-x)Zr2Nb2B10Nix(x=0、1、3和5)非晶合金带材。采用X射线衍射仪、差示扫描量热仪、振动样品磁强计以及精密磁性器件分析仪研究Ni元素对FeZrNbB合金带材的非晶形成能力和软磁性能影响。结果表明Ni元素能明显提高该体系合金的非晶形成能力,并使淬火态非晶合金带材的一级起始晶化温度提高;通过合金的退火处理,在Fe(86-x)Zr2Nb2B10Nix合金体系中含Ni元素的合金带材可以析出最小粒径为12(12.15)nm的α-Fe(a)纳米晶,获得较低的矫顽力为8.1A/m;其中Fe85Zr2Nb2B10Ni1非晶合金带材经过510℃保温20min热处理后可以获得较高的饱和磁感应强度为1.61T,有效磁导率提升到48.4k,矫顽力下降到8.3A/m。  相似文献   

13.
利用单铜辊甩带法制备Fe40Ni38Mo4B(18-x)Six(x=0,2,4,6,8,10和12)非晶合金带材,并用X射线衍射仪(XRD)、差示扫描量热仪(DSC)、振动样品磁强计(VSM)以及精密磁性器件分析仪研究Si元素对Fe Ni Mo BSi合金带材的非晶形成能力和软磁性能影响。结果表明,随着Si元素的添加,合金带材的矫顽力Hc先减小后增大,并在x=4时最小为5.8 A/m;Fe40Ni38Mo4B14Si4合金带材在405℃保温10 min热处理后获得较高的饱和磁化强度为112.63 A·m2/kg,在345℃保温10 min热处理后获得较低的矫顽力为7.0A/m。  相似文献   

14.
刘雪娇 《包装工程》1992,13(2):53-58
着重介绍国内外软饮料工业的现状与发展趋势,并就国内软饮料工业存在的某些问题,提出了一些看法。  相似文献   

15.
16.
Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end‐effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research.  相似文献   

17.
18.
19.
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long‐term stability and hysteresis‐free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed‐loop feedback control of soft robots, machines, and haptic devices.  相似文献   

20.
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium‐based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high‐strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low‐voltage regime (from 0.1 to 5 V), with long‐term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm?2), high electrochemical capacitance (≈mF g?1), and minimal mechanical stress at the polymer/metal composite interface upon deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号