首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmonic biosensors based on noble metals generally suffer from low sensitivities if the perturbation of refractive‐index in the ambient is not significant. By contrast, the features of degenerately doped semiconductors offer new dimensions for plasmonic biosensing, by allowing charge‐based detection. Here, this concept is demonstrated in plasmonic hydrogen doped molybdenum oxides (HxMoO3), with the morphology of 2D nanodisks, using a representative enzymatic glucose sensing model. Based on the ultrahigh capacity of the molybdenum oxide nanodisks for accommodating H+, the plasmon resonance wavelengths of HxMoO3 are shifted into visible‐near‐infrared wavelengths. These plasmonic features alter significantly as a function of the intercalated H+ concentration. The facile H+ deintercalation out of HxMoO3 provides an exceptional sensitivity and fast kinetics to charge perturbations during enzymatic oxidation. The optimum sensing response is found at H1.55MoO3, achieving a detection limit of 2 × 10?9m at 410 nm, even when the biosensing platform is adapted into a light‐emitting diode‐photodetector setup. The performance is superior in comparison to all previously reported plasmonic enzymatic glucose sensors, providing a great opportunity in developing high performance biosensors.  相似文献   

2.
Infrared (IR) photodetection is important for light communications, military, agriculture, and related fields. Organic transistors are investigated as photodetectors. However, due to their large band gap, most organic transistors can only respond to ultraviolet and visible light. Here high performance IR phototransistors with ternary semiconductors of organic donor/acceptor complex and semiconducting single-walled carbon nanotubes (SWCNTs), without deep cooling requirements are developed. Due to both the ultralow intermolecular electronic transition energy of the complex and charge transport properties of SWCNTs, the phototransistor realizes broadband photodetection with photoresponse up to 2600 nm. Moreover, it exhibits outstanding performance under 2000 nm light with photoresponsivity of 2.75 × 106 A W−1, detectivity of 3.12 × 1014 Jones, external quantum efficiency over 108%, and high Iphoto/Idark ratio of 6.8 × 105. The device exhibits decent photoresponse to IR light even under ultra-weak light intensity of 100 nW cm−2. The response of the phototransistor to blackbody irradiation is demonstrated, which is rarely reported for organic phototransistors. Interestingly, under visible light, the device can also be employed as synaptic devices, and important basic functions are realized. This strategy provides a new guide for developing high performance IR optoelectronics based on organic transistors.  相似文献   

3.
Solar steam generation technologies have gained increasing attention due to their great potential for clean water generation with low energy consumption. The rational design of a light absorber that can maximize solar energy utilization is therefore of great importance. Here, the synthesis of Ni@C@SiO2 core–shell nanoparticles as promising light absorbers for steam generation by taking advantage of the plasmonic excitation of Ni nanoparticles, the broadband absorption of carbon, and the protective function and hydrophilic property of silica is reported. The nanoparticle-based evaporator shows an excellent photothermal efficiency of 91.2%, with an evaporation rate of 1.67 kg m−2 h−1. The performance can be further enhanced by incorporating the nanoparticles into a polyvinyl alcohol hydrogel to make a composite film. In addition, utilizing the magnetic property of the core–shell particles allows the creation of surface texture in the film by applying an external magnetic field, which helps increase surface roughness and further boost the evaporation rate to as high as 2.25 kg m−2 h−1.  相似文献   

4.
Promoting light absorption range of photocatalysts is of great significance to improve solar light-driven photocatalytic CO2 reduction efficiency. Herein, a new viologen-based multicomponent heterotrimetallic metal–organic framework (MOF) [Cu3Th6(µ3-O)4(µ3-OH)4(cpb)12][FeIII(CN)6]6 (IHEP-14) with an unprecedented (6, 18)-connected she-d topology is presented. Upon UV irradiation, this MOF undergoes ligand and iron photoreduction, and a single-crystal-to-single-crystal transformation to generate persistent radical-containing MOF [Cu3Th6(µ3-O)4(µ3-OH)4(cpb)12][FeII(CN)6]6 (IHEP-15). This radical-containing MOF shows excellent stability without fading after at least 2 months in air. Besides extending the photoabsorption to a wider wavelength range covering from 200 to 2,500 nm, the generation of persistent radical in IHEP-15 also largely enhances its CO2 adsorption capacity by a factor of three due to the strong affinity between π orbital of the radical and the π system of CO2. These attributes endow IHEP-15 with excellent visible/NIR light-driven CO2 photoreduction activity, with CO production rates under visible and NIR irradiation of 570.3 and 209.3 µmol h−1 g−1, respectively. Notably, the latter is a record high for NIR-induced CO production among all MOFs reported so far.  相似文献   

5.
Intermediate temperature solid oxide fuel cells (IT-SOFCs) are cost-effective and efficient energy conversion systems. The sluggish oxygen reduction reaction (ORR) and the degradation of cathodes are critical challenges to the commercialization of IT-SOFCs. Here, a highly efficient multiphase (MP) catalyst coating, consisting of Ba1−xCo0.7Fe0.2Nb0.1O3−δ (BCFN) and BaCO3, to enhance the ORR activity and durability of the state-of-the-art lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3−δ, LSCF) cathode is reported. The conformal MP catalyst-coated LSCF cathode shows a polarization resistance (Rp) of 0.048 Ω cm2 at 650 °C, about one order of magnitude smaller than that of the bare LSCF. In an accelerated Cr-poisoning test, the degradation rate of the catalyst-coated LSCF electrode is 10−3 Ω cm2 h−1 (0.59% h−1) over 200 h, only one fifth of the degradation rate of the bare LSCF electrode at 750 °C. In addition, anode-supported single cells with the MP catalyst-coated LSCF cathode show a dramatically enhanced peak power density (1.4 W cm−2 vs 0.67 W cm−2 at 750 °C) and increased durability against Cr and H2O. Both experimental results and density functional theory-based calculations indicate that the BCFN phase improves the ORR activity while the BaCO3 phase enhances the stability of the LSCF cathode.  相似文献   

6.
Rational design/synthesis of atomic-level-engineered Janus junctions for sunlight-impelled high-performance photocatalytic generation of clean fuels (e.g., H2O2 and H2) and valuable chemicals are of great significance. Especially, it is appealing but challenging to acquire accurately-engineered Janus atomic junctions (JAJs) for simultaneously realizing the plasmonic energy upconversion with near-infrared (NIR) light and direct Z-scheme charge transfer with visible light. Here, a range of new Cu7S4/MxSy (M=Cd, Ni, and Mn) JAJs are designed/synthesized via a cation-exchange route using Cu7S4 hexagonal nanodisks as templates. All Cu7S4/MxSy JAJs show apparently-enhanced photocatalytic H2O2 evolution compared to Cu7S4 in pure water. Notably, optimized Cu7S4/CdS (CCS) JAJ exhibits the outstanding H2O2 evolution rate (2.93 mmol g−1 h−1) in benzyl alcohol aqueous solution, due to the following factors: i) NIR light-impelled plasmonic energy upconversion induced H2O2 evolution, revealed by ultrafast transient absorption spectroscopy; ii) visible-light-driven direct Z-scheme charge migration, confirmed by in situ X-ray photoelectron spectroscopy. Besides, three different reaction pathways for H2O2 evolution are disclosed by in situ electron spin resonance spectroscopy and quenching experiments. Finally, CCS JAJ also exhibits super-high rates on H2 and benzaldehyde co-generation using visible-NIR light or NIR light. This work highlights the significance of atomic-scale interface engineering for solar-to-chemical conversion.  相似文献   

7.
Anisotropic Ag2S‐edged Au‐triangular nanoprisms (TNPs) are constructed by controlling preferential overgrowth of Ag2S as plasmonic photocatalysts for hydrogen generation. Under visible and near‐infrared light irradiation, Ag2S‐edged Au‐TNPs exhibit almost fourfold higher efficiency (796 µmol h−1 g−1) than those of Ag2S‐covered Au‐TNPs (216 µmol h−1 g−1) and pure Au‐TNPs in hydrogen generation. A single‐particle photoluminescence study demonstrates that the plasmon‐induced hot electrons transfer from Au‐TNPs to Ag2S for hydrogen generation. Finite‐difference‐time‐domain simulations verify that the corners/edges of Au‐TNPs are high‐curvature sites with maximum electric field distributions facilitating hot electron generation and transfer. Therefore, Ag2S‐edged Au‐TNPs are efficient plasmonic photocatalyst with the desired configurations for charge separation boosting hydrogen generation.  相似文献   

8.
Cocatalyst engineering with non-noble metal nanomaterials can play a vital role in low-cost, sustainable, and large-scale photocatalytic hydrogen production. This research adopts slow carburization and simultaneous hydrocarbon reduction to synthesize carbon-encapsulated Mo/Mo2C heterostructure nanoparticles, namely Mo/Mo2C@C cocatalyst. Experimental and theoretical investigations indicate that the Mo/Mo2C@C cocatalysts have a nearly ideal hydrogen-adsorption free energy (ΔGH*), which results in the accelerated HER kinetics. As such, the cocatalysts are immobilized onto organic polymer semiconductor g-C3N4 and inorganic semiconductor CdS, resulting in Mo/Mo2C@C/g-C3N4 and Mo/Mo2C@C/CdS catalysts, respectively. In photocatalytic hydrogen evolution application under visible light, the Mo/Mo2C@C with g-C3N4 and CdS can form the Schottky junctions via appropriate band alignment, greatly suppressing the recombination of photoinduced electron-hole pairs. The surface carbon layer as the conducting scaffolds and Mo metal facilitates electron transfer and electron-hole separation, favoring structural stability and offering more reaction sites and interfaces as electron mediators. As a result, these catalysts exhibit high H2 production rates of 2.7 mmol h−1 g−1 in basic solution and 98.2 mmol h−1 g−1 in acidic solution, respectively, which is significantly higher than that of the bench-mark Pt-containing catalyst. The proposed cocatalyst engineering approach is promising in developing efficient non-noble metal cocatalysts for rapid hydrogen production.  相似文献   

9.
Hydrogen is a promising alternative to fossil fuels that can reduce greenhouse gas emissions. Decoupled water electrolysis system using a reversible proton storage redox mediator, where the oxygen evolution reaction and hydrogen evolution reaction are separated in time and space, is an effective approach to producing hydrogen gas with high purity, high flexibility, and low cost. To realize fast hydrogen production in such a system, a redox mediator capable of releasing protons rapidly is required. Herein, α-MoO3, with an ultrafast proton transfer property that can be explained by a dense hydrogen bond network in the lattice oxygen arrays of HxMoO3, is examined as a high-rate redox mediator for fast hydrogen production in acidic electrolytes. The α-MoO3 redox mediator shows both a large capacity of 204 mAh g−1 and fast hydrogen production at a current rate of 10 A cm−2(≈153 A g−1), outperforming most of the previously reported solid-state redox mediators.  相似文献   

10.
Multifunctional separation membrane is usually realized by multi-component collaborative construction, which makes the membrane preparation method complicated and uncontrollable. Herein, a novel multifunctional photocatalytic separation membrane is prepared by vacuum self-assembly of single seaweed-like g-C3N4 photocatalyst. The seaweed-like g-C3N4 gives membrane certain roughness, large specific surface area, excellent hydrophilicity and abundant transport channels. Through a systematic study, the membrane exhibits excellent separation of five oil-in-water emulsions with a maximum flux of 3114.0 ± 113.0 L m−2 h−1 bar−1 for 1, 2-dichloroethane-in-water (Dc/W) emulsion and a maximum efficiency of 97.4 ± 0.1% for chloroform-in-water (C/W) emulsion. In addition, the seaweed-like g-C3N4 with large specific surface area and narrow bandgap render excellent visible light absorption characteristics and accelerate e-h+ pairs transport rate, giving the membrane excellent photocatalytic degradation and antibacterial properties. The membrane shows good degradation for eight different pollutants, among which the degradation effect for rhodamine B (RhB), methylene blue (MB), and crystal violet (CV) were ≈100%. The antibacterial efficiency against E. coli and S. aureus is also close to 100%. After 35 consecutive separations of C/W emulsion and 10 consecutive degradations of RhB, the membrane still maintains excellent separation performance. This long-lasting multifunctional separation membrane exhibits broad application prospects in complex wastewater purification.  相似文献   

11.
2D InSe is one of the semimetal chalcogenides that has been recently given attention thanks to its excellent electrical properties, such as high mobility near 1000 cm2 V−1 s−1 and moderate band gap of ≈1.26 eV suitable for IR detection. Here, high-performance visible to near-infrared (470–980 nm wavelength (λ)) photodetectors using surface-doped InSe as a channel and few-layer graphenes (FLG) as electrodes are reported, where the InSe top region is relatively p-doped using AuCl3. The surface-doped InSe photodetectors show outstanding performance, achieving a photoresponsivity (R) of ≈19 300 A W−1 and a detectivity (D*) of ≈3 × 1013 Jones at λ = 470 nm, and R of ≈7870 A W−1 and D* of ≈1.5 × 1013 Jones at λ = 980 nm, superior to previously reported 2D material-based IR photodetectors operating without an applied gate bias. Surface doping using AuCl3 renders a band bending at the junction between the InSe surface and the top FLG contact, which facilitates electron-hole pair separation and immediate photodetection. Multiple doped or undoped InSe photodetectors with different device structures are investigated, providing insight into the photodetection mechanism and optimizing performance. Encapsulation with hexagonal boron nitride dielectric also allows for 3-month stability.  相似文献   

12.
Nonmetallic plasmonic heterostructure TiO2‐mesocrystals/WO3?x‐nanowires (TiO2‐MCs/WO3?x‐NWs) are constructed by coupling mesoporous crystal TiO2 and plasmonic WO3?x through a solvothermal procedure. The continuous photoelectron injection from TiO2 stabilizes the free carrier density and leads to strong surface plasmon resonance (SPR) of WO3?x, resulting in strong light absorption in the visible and near‐infrared region. Photocatalytic hydrogen generation of TiO2‐MCs/WO3?x‐NWs is attributed to plasmonic hot electrons excited on WO3?x‐NWs under visible light irradiation. However, utilization of injected photoelectrons on WO3?x‐NWs has low efficiency for hydrogen generation and a co‐catalyst (Pt) is necessary. TiO2‐MCs/WO3?x‐NWs are used as co‐catalyst free plasmonic photocatalysts for CO2 reduction, which exhibit much higher activity (16.3 µmol g?1 h?1) and selectivity (83%) than TiO2‐MCs (3.5 µmol g?1 h?1, 42%) and WO3?x‐NWs (8.0 µmol g?1 h?1, 64%) for methane generation under UV–vis light irradiation. A photoluminescence study demonstrates the photoelectron injection from TiO2 to WO3?x, and the nonmetallic SPR of WO3?x plays a great role in the highly selective methane generation during CO2 photoreduction.  相似文献   

13.
Solid oxide fuel cell (SOFC) is regarded as an environmentally friendly energy conversion device, which can directly convert the chemical energy stored in the fuel to the electrical energy. However, the degradation of cathodes caused by Cr-containing steel interconnects is a major problem that limits the broader application of SOFC. Herein, a novel A-site high entropy oxide, based on the cobalt-free PrBaFe2O5+δ (PBF) cathode, La0.2Pr0.2Nd0.2Sm0.2Gd0.2BaFe2O5+δ (LPNSGBF), is proposed as a high catalyst activity and Cr-tolerance cathode for SOFC. The anode-supported cell with the LPNSGBF cathode exhibits an excellent peak power density of 1020.69 mW cm−2 at 800 °C, which is better than that of the PBF (794.96 mW cm−2). Moreover, under the Cr-containing atmosphere, the outstanding stability of the single cell with the LPNSGBF for 100 h with a degradation rate of 0.17% h−1, is much lower than the 0.79% h−1 for that of the PBF cathode. The study provides a new strategy for achieving the enhanced oxygen reduction reaction and high Cr-tolerance of the cobalt-free cathode by high entropy doping.  相似文献   

14.
Compared to monometallic counterparts, bimetallic two-dimensional conjugated metal-organic framework (2D c-MOF) nanosheets possess preferable metal tunability and synergistic effect for performance optimization, yet rarely developed in photocatalytic hydrogen evolution to date. In this study, a feasible post-synthetic strategy of second metal installation (SMI) is proposed and applied to construct a crystalline bimetallic 2D c-MOF nanosheet, HTHATN-Ni-Pt-NS. HTHATN-Ni-Pt-NS exhibits high electrical conductivity and efficient hydrogen evolution with the rate of 47.2 mmol g−1 h−1, which is 13.5-fold higher than that of pristine HTHATN-Ni-NS without PtII decoration under visible light irradiation. Experimental and theoretical analysis reveal that introduction of low amount of PtII provides catalytically active metal sites and optimizes the ΔGH* value of NiII centers, thus resulting in the enhanced performance of proton reduction. This study represents the first example of symbiotic bimetallic centers in MOF nanosheets highlighting SMI strategy as an efficient approach to construct photocatalysts.  相似文献   

15.
Metal oxide (MO) semiconductors are widely used in electronic devices due to their high optical transmittance and promising electrical performance. This work describes the advancement toward an eco-friendly, streamlined method for preparing thin-film transistors (TFTs) via a pure water-solution blade-coating process with focus on a low thermal budget. Low temperature and rapid annealing of triple-coated indium oxide thin-film transistors (3C-TFTs) and indium oxide/zinc oxide/indium oxide thin-film transistors (IZI-TFTs) on a 300 nm SiO2 gate dielectric at 300 °C for only 60 s yields devices with an average field effect mobility of 10.7 and 13.8 cm2 V−1 s−1, respectively. The devices show an excellent on/off ratio (>106), and a threshold voltage close to 0 V when measured in air. Flexible MO-TFTs on polyimide substrates with AlOx dielectrics fabricated by rapid annealing treatment can achieve a remarkable mobility of over 10 cm2 V−1 s−1 at low operating voltage. When using a longer post-coating annealing period of 20 min, high-performance 3C-TFTs (over 18 cm2 V−1 s−1) and IZI-TFTs (over 38 cm2 V−1 s−1) using MO semiconductor layers annealed at 300 °C are achieved.  相似文献   

16.
Luminescent metal halide materials with flexible crystallography/electronic structures and tunable emission have demonstrated broad application prospects in the visible light region. However, designing near-infrared (NIR) light-emitting metal halides remains a challenge. Here, an enlightening prototype is proposed to explore the high-efficiency broadband NIR emission in metal halide systems by incorporating Sb3+ into the Cs2ZnCl4 matrix. Combined experimental analysis and density functional theory calculations reveal a modified self-trapped excitons model to elaborate the NIR emission. The high photoluminescence quantum yield of 69.9% peaking at 745 nm and large full width at half maximum of 175 nm, along with excellent air/thermal stability, show the unique advantages of lead-free metal halide Cs2ZnCl4:Sb3+ as the NIR light source. The substitution of Cl by Br further enables the red-shift of emission peak from 745 to 823 nm. The NIR light-emitting diode device based on Cs2ZnCl4:Sb3+ demonstrates potential as a non-visible light source in night vision. This study puts forward an effective strategy to design the novel eco-friendly and high-efficiency NIR emissive materials and provides guidance for expanding the application scope of luminescent metal halides.  相似文献   

17.
Piezocatalysis, governed by piezo-potential within piezoelectrics, has gained prominence for reactive oxygen species (ROS) generation, which is significant to environmental and biological applications. However, designing piezocatalysts with excellent piezocatalytic performance in a wide temperature and efficient charge carrier separation ability is still challenging. Herein, eco-friendly BaTiO3 (BT)-based perovskite ferroelectrics with tailored multiphase coexistence in a wide temperature range are constructed to boost higher piezoelectricity and large piezo-potential, which is attributed to decreased polarization anisotropy by flat Gibbs energy profile. Elevated piezo-potential in designed BT-based piezocatalyst guarantees high-efficient generation rate of •OH (200 µmol g−1 h−1) and •O2 (40 µmol g−1 h−1) by ultrasound stimulation, which is 3.5 times more than that of pure BT. Besides, piezocatalytic capacity to degrade dye wastewater shows a rate constant of 0.0182 min−1 and gives an antibacterial rate of 95% within 30 min for eliminating E. coli. Theoretical simulations validate that the local distortion of TiO6 octahedra also contributes to piezocatalytic performance by inducing electron–hole pairs separation in real space, and better response to slight structural deformation. This work is important to design high-performance piezocatalysts with high-efficiency ROS generation for sewage treatment and sonodynamic therapy.  相似文献   

18.
The new layered niobate Cu0.5Nb3O8 is synthesized by soft chemistry in aqueous electrolyte via Cu2+→H+ exchange between copper nitrate and HNb3O8·H2O. The characterization of the exchanged product is made by means of thermal gravimetry, chemical analysis, X-ray diffraction and IR spectroscopy. Thermal analysis shows a conversion to anhydrous compound above 500 °C. The oxide displays a semiconductor like behavior; the thermal variation of the conductivity shows that d electrons are strongly localized and the conduction is thermally activated with activation energy of 0.13 eV. The temperature dependence of the thermopower is indicative of an extrinsic conductivity; the electrons are dominant carriers in conformity with an anodic photocurrent. Indeed, the Mott–Schottky plot confirms n-type conduction from which a flat band potential of −0.82 VSCE, an electronic density of 8.72×1019 m−3 and a depletion width of 4.4 nm are determined. The upper valence band, located at ~5.8 eV below vacuum is made up predominantly of Cu2+: 3d with a small admixture of O2−: 2p orbitals whereas the conduction band consists of empty Nb5+: 5s level. The energy band diagram shows the feasibility of the oxide for the photocatalytic hydrogen production upon visible light (29 mW cm−2) with a rate evolution of 0.31 mL g−1 min−1.  相似文献   

19.
We have investigated the semiconducting and photoelectrochemical properties of SnO films grown potentiostatically on tin substrate. The oxide is characterized by X-ray diffraction, scanning electron microscopy and Raman spectroscopy. The anodic process corresponds to the formation of SnO·nH2O pre-passive layer that is removed upon increasing potential due to surface etching at the metal/oxide interface. SnO films deposited for long durations (>50 mn) are uniform and well adhered; they thicken up to ~50 nm by diffusion-controlled process and the growth follows a direct logarithmic law. The thickness is determined by coulometry and the X-ray diffraction indicates the tetragonal SnO phase (SG: P4/mmm) with a crystallite size of 32 nm. The Mott–Schottky plot is characteristic of n type conductivity with an electrons density of 5.72×1018 cm−3, a flat band potential of −0.09 VSCE and a depletion width of ~10 nm. The valence band, located at 5.91 eV below, vacuum is made up of hybridized O2−:2p Sn2+:5s while the conduction band (4.45 eV) derives from Sn2+:5p orbital. The electrochemical impedance spectroscopy (EIS) measured in the range (10−2–105 Hz) shows the contribution of the bulk and grain boundaries. The energy band diagram predicts the photodegradation of methylene blue on SnO films. 67% of the initial concentration (10 mg L−1) disappears after 3 h of exposure to visible light (9 mW cm−2) with a quantum yield of 0.072.  相似文献   

20.
A three-plasmon hybrid, in which core–shell Au@Cu2−xS hybrids are bonded with ultrathin Ti3C2Tx MXene, is prepared for high-efficiency photothermal conversion and membrane-based solar water evaporation for the first time. The MXene/Au nanorod@Cu2−xS hybrids display excellent photothermal conversion efficiency under irradiation of an 808 laser, causing by the three-plasmon-induced synergistic plasmonic absorption and heating effects as well as the multichannel charge transfer between the components. Then, Au nanosphere@Cu2−xS and Au nanorod@Cu2−xS hybrids are mixed and combined with MXene to serve as the membrane material, which shows excellent light absorption ranging from ultraviolet to near-infrared region. By transferring the membrane materials on a hydrophilic cotton piece, the as-prepared photothermal membrane displays a high evaporation rate of 2.023 kg m−2 h−1 and light-to-heat conversion efficiency of 96.1% under 1-sun irradiation due to the synergistic photothermal conversion and over 96% of solar light absorption efficiency. Furthermore, a home-made solar evaporation device enabling automatic inflow of untreated water and outflow of evaporated water is designed based on the principles of liquid pressure and connectors. The seawater desalination and sewage treatment experiments performed on the device and membrane indicate the great potential in solar-light-driven water purification and drinkable water generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号