首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As one of the most promising hole transport layers (HTLs), nickel oxide (NiOx) has received extensive attention due to its application in flexible large-area perovskite solar cells (PSCs). However, the poor interface contact caused by inherent easy-agglomeration phenomenon of NiOx nanoparticles (NPs) is still the bottleneck for achieving high-performance devices. Herein, a general strategy to synthesize NiOx NPs with high crystallinity and good dispersibility via the polymer network micro-precipitation method is reported. Promisingly, this approach realizes the flow-division of precipitant and the restraint of the NPs motion, thereby effectively alleviating the coagulation phenomenon caused by excessive local concentration and secondary movement adsorption. Furthermore, the addition of ionic liquid not only inhibits the secondary aggregation of NiOx NPs during the dispersion process, but also significantly enhances the properties of the colloidal solution. Ultimately, the 1.01 cm2 PSCs based on the optimized NiOx HTLs achieve the champion power conversion efficiency of 20.91% and 19.17% on rigid and flexible substrates, respectively. Moreover, the reproducibility and stability of PSCs are also significantly improved, especially for flexible devices. Overall, this strategy provides the possibility for flexible, large-area fabrication of high-quality NiOx HTLs to promote the development of stable and efficient perovskite devices.  相似文献   

2.
Despite the outstanding role of mesoscopic structures on the efficiency and stability of perovskite solar cells (PSCs) in the regular (n–i–p) architecture, mesoscopic PSCs in inverted (p–i–n) architecture have rarely been reported. Herein, an efficient and stable mesoscopic NiOx (mp-NiOx) scaffold formed via a simple and low-cost triblock copolymer template-assisted strategy is employed, and this mp-NiOx film is utilized as a hole transport layer (HTL) in PSCs, for the first time. Promisingly, this approach allows the fabrication of homogenous, crack-free, and robust 150 nm thick mp-NiOx HTLs through a facile chemical approach. Such a high-quality templated mp-NiOx structure promotes the growth of the perovskite film yielding better surface coverage and enlarged grains. These desired structural and morphological features effectively translate into improved charge extraction, accelerated charge transportation, and suppressed trap-assisted recombination. Ultimately, a considerable efficiency of 20.2% is achieved with negligible hysteresis which is among the highest efficiencies for mp-NiOx based inverted PSCs so far. Moreover, mesoscopic devices indicate higher long-term stability under ambient conditions compared to planar devices. Overall, these results may set new benchmarks in terms of performance for mesoscopic inverted PSCs employing templated mp-NiOx films as highly efficient, stable, and easy fabricated HTLs.  相似文献   

3.
The performance of five hole-transporting layers (HTLs) is investigated in both single-junction perovskite and Cu(In, Ga)Se2 (CIGSe)-perovskite tandem solar cells: nickel oxide (NiOx,), copper-doped nickel oxide (NiOx:Cu), NiOx+SAM, NiOx:Cu+SAM, and SAM, where SAM is the [2-(3,-6Dimethoxy-9H-carbazol-9yl)ethyl]phosphonic acid (MeO-2PACz) self-assembled monolayer. The performance of the devices is correlated to the charge-carrier dynamics at the HTL/perovskite interface and the limiting factors of these HTLs are analyzed by performing time-resolved and absolute photoluminescence ((Tr)PL), transient surface photovoltage (tr-SPV), and X-ray/UV photoemission spectroscopy (XPS/UPS) measurements on indium tin oxide (ITO)/HTL/perovskite and CIGSe/HTL/perovskite stacks. A high quasi-Fermi level splitting to open-circuit (QFLS-Voc) deficit is detected for the NiOx-based devices, attributed to electron trapping and poor hole extraction at the NiOx-perovskite interface and a low carrier effective lifetime in the bulk of the perovskite. Simultaneously, doping the NiOx with 2% Cu and passivating its surface with MeO-2PACz suppresses the electron trapping, enhances the holes extraction, reduces the non-radiative interfacial recombination, and improves the band alignment. Due to this superior interfacial charge-carrier dynamics, NiOx:Cu+SAM is found to be the most suitable HTL for the monolithic CIGSe-perovskite tandem devices, enabling a power-conversion efficiency (PCE) of 23.4%, Voc of 1.72V, and a fill factor (FF) of 71%, while the remaining four HTLs suffer from prominent Voc and FF losses.  相似文献   

4.
The buried interface has important effect on carrier extraction and nonradiative recombination of perovksite solar cells (PSCs). Herein, to inactivate the buried interfacial defects of perovskite and boost the crystallization quality of perovskite film, 3-amino-1-adamantanol (AAD) serves as a pre-buried interface modifier on nickel oxide (NiOx) surface to regulate the nucleation and crystallization process of perovskite precursor. The amino and hydroxyl groups in AAD molecule can synchronously coordinate with nickel ion (Ni3+) in NiOx and lead ion in perovskite, respectively. The dual action favors the ordered arrangement of AAD molecules between NiOx and perovskite, which not only enhances hole extraction in hole transport layer, but also provides active sites for homogeneous nucleation. Furthermore, AAD modifier blocks the unfavorable reaction between Ni3+ and perovskite, and effectively passivates the buried interfacial defects. The optimal inverted PSCs achieve a champion power conversion efficiency of 22.21% with negligible hysteresis, favorable thermal, optical, and long-term stability. Thus, this strategy of modulating perovskite nucleation and crystallization by pre-buried modifier is feasible for achieving efficient and stable inverted perovskite solar cells.  相似文献   

5.
The poor interface quality between nickel oxide (NiOx) and halide perovskites limits the performance and stability of NiOx-based perovskite solar cells (PSCs). Here a reactive surface modification approach based on the in situ decomposition of urea on the NiOx surface is reported. The pyrolysis of urea can reduce the high-valence state of nickel and replace the adsorbed hydroxyl group with isocyanate. Combining theoretical and experimental analyses, the treated NiOx films present suppressed surface states and improved transport energy level alignment with the halide perovskite absorber. With this strategy, NiOx-based PSCs achieve a champion power conversion efficiency (PCE) of 23.61% and a fill factor of over 86%. The device's efficiency remains above 90% after 2000 h of thermal aging at 85 °C. Furthermore, perovskite solar modules achieve PCE values of 18.97% and 17.18% for areas of 16 and 196 cm2, respectively.  相似文献   

6.
While there are very limited studies of doped ternary metal oxide based hole transport materials, a multifunctional synthesis approach of In doped CuCrO2 nanoparticles (NPs) as efficient hole transport layers (HTLs) including simplifying the synthesis requirements is proposed, enabling doping and achievement of treatment‐free HTLs. Remarkably, compared with conventional methods for synthesizing CuCrO2 NPs, the newly proposed azeotropic promoted approach dramatically reduces the reaction time by 90% and the calcination temperature by one‐third, which not only promotes high throughput production but also reduces power consumption and cost in synthesis. Equally important, indium is successfully doped into CuCrO2, which is fundamentally difficult in low temperature processes. The In doping offers less d–d transition of Cr3+ and p‐type doping characteristics for improving HTL transmittance and conductivity, respectively. Interestingly, In doped CuCrO2 HTL with these improvements can be achieved by a simple ambient‐condition process and exhibits thermal stability up to 200 °C, which allows perovskite solar cells (PSCs) to achieve a power conversion efficiency of 20.54%. Meanwhile, the devices show good repeatability and photostability. Consequently, the work contributes to establishing a simple approach to realize pristine and doped multinary oxides based HTL for the development of practical and high performing PSCs.  相似文献   

7.
We here demonstrate the use of solution processed NiOx thin films as the hole transport layer (HTL) in a thiophene–quinoxaline copolymer:fullerene solar cell. The NiOx films, which are prepared by UV-ozone treating a nickel formate precursor, outperform the solar cells prepared in this study that use PEDOT:PSS as HTL. The power conversion efficiency improves from 5.3% to 6.1% when replacing PEDOT:PSS with NiOx. Unlike most conventional ways of fabricating solution processed NiOx HTLs, our method does not require high temperature (>300 °C). In fact, we were able to produce high performing NiOx HTLs without the use of any thermal annealing. X-ray photoelectron spectroscopy revealed that a mixture of oxides and hydroxides is formed as a result of the UV-ozone treatment, which differs in composition from those formed by high temperature annealing; UV-ozone treatment produces NiOOH, while only the high temperature annealing produces any significant amount of NiO. Contact potential difference (CPD) measurements reveal an increased work function for all UV-ozone treated NiOx films, consistent with the presence of NiOOH at the surface. The high work function of the UV-ozone treated NiOx films leads to an improved energy level matching between the donor and the HTL, resulting in higher fill factor and hole injection current.  相似文献   

8.
Perovskite solar cells (PSCs) are expected to profoundly impact the photovoltaic society on account of its high-efficiency and cost-saving manufacture. As a key component in efficient PSCs, the hole transport layer (HTL) can selectively collect photogenerated carriers from perovskite absorbers and prevent the charge recombination at interfaces. However, the mainstream organic HTLs generally require multi-step synthesis and hygroscopic dopants that significantly limit the practical application of PSCs. Here, a self-organized percolative architecture composed of narrow bandgap oxides (e.g., Co3O4, NiO, CuO, Fe2O3, and MnO2) and wide bandgap SrCO3 oxysalt as efficient HTLs for PSCs is presented. The percolation of dual phases offers nanosized hole transport pathways and optimized interfacial band alignments, enabling significantly improved charge collection compared with the single phase HTLs. As a consequence, the power conversion efficiency boosted from 8.08% of SrCO3 based device and 15.47% of Co3O4 based device to 21.84% of Co3O4-SrCO3 based one without notable hysteresis. The work offers a new direction by employing percolative materials for efficient charge transport and collection in PSCs, and would be applicable to a wide range of opto-electronic thin film devices.  相似文献   

9.
The self-assembled hole transporting molecules (SAHTMs) bearing anchoring groups have been established as the hole transporting layers (HTLs) for highly efficient p–i–n perovskite solar cells (PSCs), yet their stability and engineering at the molecular level remain challenging. A topological design of highly anisotropic aligned SAHTM-based HTLs for operationally stable PSCs that exhibit exceptional solar-to-electric power conversion efficiencies (PCEs) is demonstrated. The judiciously designed multifunctional self-assembled molecules comprise the donor–acceptor subunit for hole transporting and the phosphonic acid group for anchoring, realizing face-on π-stacking parallel to the transparent conductive oxide substrate. The high affinity of SAHTMs to the multi-crystalline perovskite thin film benefits passivating the perovskite buried interface, strengthening interfacial contact while facilitating interfacial hole transfer. Consequently, highly efficient p–i–n PSC devices are obtained with a champion PCE of 23.24% and outstanding operational stability toward various environmental factors including long-term full sunlight soaking at evaluated temperatures. Perovskite solar modules with a champion efficiency approaching 20% are also fabricated for an active device area above 17 cm2.  相似文献   

10.
Formamidinium lead triiodide (FAPbI3) with an ideal bandgap and good thermal stability has received wide attention and achieved a record efficiency of 26% in n–i–p (regular) perovskite solar cells (PSCs). However, imperfect FAPbI3 formation on the typical hole transport layer (HTL), high interfacial trap-state density, and unfavorable energy alignment between the HTL and FAPbI3 result in the inferior photovoltaic performance of p–i–n (inverted) PSCs with FAPbI3 absorber. Herein, the α-phase FAPbI3 is stabilized by constructing a buffer interface region between the NiOx HTL and FAPbI3, which not only diminishes NiOx/FAPbI3 interfacial reactions and defects but also facilitates carrier transport. Upon the construction of a buffer interface region, FAPbI3 inverted PSC exhibits a high-power conversion efficiency of 23.56% (certified 22.58%) and excellent stability, retaining 90.7% of its initial efficiency after heating at 80 °C for 1000 h and 84.6% of the initial efficiency after operating at the maximum power point under continuous illumination for 1100 h. Besides, as a light-emitting diode device, the FAPbI3 inverted PSC can be directly lit with an external quantum efficiency of 1.36%. This study provides a unique and efficient strategy to advance the application of α-phase FAPbI3 in inverted PSCs.  相似文献   

11.
Most of the high performance in perovskite solar cells (PSCs) have only been achieved with two organic hole transporting materials: 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (Spiro‐OMeTAD) and poly(triarylamine) (PTAA), but their high cost and low stability caused by the hygroscopic dopant greatly hinder the commercialization of PSCs. One effective alternative to address this problem is to utilize inexpensive inorganic hole transporting layer (i‐HTL), but obtaining high efficiency via i‐HTLs has remained a challenge. Herein, a well‐designed inorganic–organic double HTL is constructed by introducing an ultrathin polymer layer dithiophene‐benzene (DTB) between CuSCN and Au contact. This strategy not only enhances the hole extraction efficiency through the formation of cascaded energy levels, but also prevents the degradation of CuSCN caused by the reaction between CuSCN and Au electrode. Furthermore, the CuSCN layer also promotes the formation of a pinhole‐free and compact DTB over layer in the CuSCN/DTB structure. Consequently, the PSCs fabricated with this CuSCN/DTB layer achieves the power conversion efficiency of 22.0% (certified: 21.7%), which is among the top efficiencies for PSCs based on dopant‐free HTLs. Moreover, the fabricated PSCs exhibit high light stability under more than 1000 h of light illumination and excellent environmental stability at high temperature (85 °C) or high relative humidity (>60% RH).  相似文献   

12.
The hole transport material (HTM) free carbon based perovskite solar cells (C‐PSCs) are promising for its manufactural simplicity, but they currently suffer from low power conversion efficiencies (PCE) largely because of the voltage loss. Here, a new strategy to increase the PCE by incorporating an ultrathin ferroelectric oxide PbTiO3 layer between the electron transport material and the halide perovskite is reported. The resulting C‐PSCs have achieved PCEs up to 16.37%, which is the highest record for HTM‐free C‐PSCs to date, mainly ascribable to the ferroelectric layer enhanced open circuit voltage. Detail measurements and analysis show an enhanced built‐in potential in the C‐PSCs as well as suppression of the non‐radiative recombination due to the ferroelectric PbTiO3 layer incorporation, accounting for the boosted VOC and photovoltaic performance.  相似文献   

13.
One effective strategy to improve the performance of perovskite solar cells (PSCs) is to develop new hole transport layers (HTLs). In this work, a simple polyelectrolyte HTL, copper (II) poly(styrene sulfonate) (Cu:PSS), which comprises easily reduced Cu2+ counter-ions with an anionic PSS polyelectrolyte backbone is investigated. Photoelectron spectroscopy reveals an increase in the work function of the anode and upward band bending effect upon incorporation of Cu:PSS in PSC devices. Cu:PSS shows a synergistic effect when mixed with polyethylenedioxythiophene: polystyrenesulfonate (PEDOT:PSS) in various proportions and results in a decrease in the acidity of PEDOT:PSS as well as reduced hysteresis in completed devices. Cu:PSS functions effectively as a HTL in PSCs, with device parameters comparable to PEDOT:PSS, while mixtures of Cu:PSS with PEDOT:PSS shows greatly improved performance compared to PEDOT:PSS alone. Optimized devices incorporating Cu:PSS/PEDOT:PSS mixtures show an improvement in efficiency from 14.35 to 19.44% using a simple CH3NH3PbI3 active layer in an inverted (P-I-N) geometry, which is one of the highest values yet reported for this type of device. It is expected that this type of HTL can be employed to create p-type contacts and improve performance in other types of semiconducting devices as well.  相似文献   

14.
Non-fullerene organic solar cells (NF–OSCs) have recently attracted enormous attention due to the rapid advance of high-performance photoabsorbers. On the other hand, interfacial materials also play a crucial role in further increasing the device efficiency, but those materials in particular effective hole transporting ones for NF–OSCs are less developed. In this work, three low-temperature solution-processing ferrous oxide films (including CoOx, NiOx, and FeOx) are used as hole transporting layer (HTL) for NF–OSCs. By adding a surfactant and treating with the ultraviolet ozone (UVO), uniform ferrous oxide films with adjustable energy bands are achieved. The NF–OSCs based on PBDB-T-2Cl:IT-4F active layer and using CoOx, NiOx, and FeOx as the HTL afford power conversion efficiencies of 11.4%, 10.2% and 6.4%, respectively. The higher performance of NF–OSCs with the UVO-treated CoOx as the HTL is attributed to its more suitable energy level alignment and better hole transportation property relative to those of the other two counterparts.  相似文献   

15.
The performance of perovskite solar cells (PSCs) strongly depends on the electron transport layer (ETL), perovskite absorber, hole transport layer (HTL), and their interfaces. Herein, the first approach to utilize ultrathin 2D titanium‐carbide MXenes (Ti3C2Tx quantum dots, TQD) by engineering the perovskite/TiO2 ETL interface and perovskite absorber and introducing Cu1.8S nanocrystals to perfect the Spiro‐OMeTAD HTL is represented. A significant hysteresis‐free power conversion efficiency improvement from 18.31% to 21.64% of PSCs is achieved after modifications with the enhanced short‐circuit current density, open‐circuit voltages, and fill factor. Various advanced characterizations, including femtosecond transient absorption spectroscopy, electrochemical impedance spectroscopy, and ultraviolet photoelectron spectroscopy, elucidate that the TQD/Cu1.8S significantly contribute to the improved crystalline quality of the perovskite film with its large grain size and improved electron/holes extraction efficiencies at perovskite/ETL and perovskite/HTL interfaces. Furthermore, the long‐time ambient and light stability of PSCs are largely boosted through the TQD and/or Cu1.8S nanocrystals doping, originating from the better crystallization of perovskite, suppressing the film aggregation and crystallization of HTL, and inhibiting the ultraviolet‐induced photocatalysis of the ETL. The findings highlight the TQD and Cu1.8S can act as a superfast electrons and holes tunnel for the optoelectronic devices.  相似文献   

16.
Advancing hole transport layers (HTL) to realize large-area, flexible, and high-performance perovskite solar cells (PSCs) is one of the most challenging issues for its commercialization. Here, a self-assembled gradient Ti3C2Tx MXene incorporated PEDOT:PSS HTL is demonstrated to achieve high-performance large-area PSCs by establishing half-caramelization-based glucose-induced MXene redistribution. Through this process, the Ti3C2Tx MXene nanosheets are spontaneously dispersed and redistributed at the top region of HTL to form the unique gradient distribution structure composed of MXene:Glucose:PEDOT:PSS (MG-PEDOT). These results show that the MG-PEDOT HTL not only offers favorable energy level alignment and efficient charge extraction, but also improves the film quality of perovskite layer featuring enlarged grain size, lower trap density, and longer carrier lifetime. Consequently, the power conversion efficiency (PCE) of the flexible device based on MG-PEDOT HTL is increased by 36% compared to that of pristine PEDOT:PSS HTL. Meanwhile, the flexible perovskite solar minimodule (15 cm2 area) using MG-PEDOT HTL achieve a PCE of 17.06%. The encapsulated modules show remarkable long-term storage stability at 85 °C in ambient air (≈90% efficiency retention after 1200 h) and enhanced operational lifetime (≈90% efficiency retention after 200 h). This new approach shows a promising future of the self-assembled HTLs for developing optoelectronic devices.  相似文献   

17.
This study is on the enhancement of the efficiency of wide bandgap (FA0.8Cs0.2PbI1.8Br1.2) perovskite solar cells (PSCs) used as the top layer of the perovskite/perovskite tandem solar cell. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and the monomolecular layer called SAM layer are effective hole collection layers for APbI3 PSCs. However, these hole transport layers (HTL) do not give high efficiencies for the wide bandgap FA0.8Cs0.2PbI1.8Br1.2 PSCs. It is found that the surface-modified PTAA by monomolecular layer (MNL) improves the efficiency of PSCs. The improved efficiency is explained by the improved FA0.8Cs0.2PbI1.8Br1.2 film quality, decreased film distortion (low lattice disordering) and low density of the charge recombination site, and improves carrier collection by the surface modified PTAA layer. In addition, the relationship between the length of the alkyl group linking the anchor group and the carbazole group is also discussed. Finally, the wide bandgap lead PSCs (Eg = 1.77 eV) fabricated on the PTAA/monomolecular bilayer give a higher power conversion efficiency of 16.57%. Meanwhile, all-perovskite tandem solar cells with over 25% efficiency are reported by using the PTAA/monomolecular substrate.  相似文献   

18.
Although charge‐carrier selectivity in conventional crystalline silicon (c‐Si) solar cells is usually realized by doping Si, the presence of dopants imposes inherent performance limitations due to parasitic absorption and carrier recombination. The development of alternative carrier‐selective contacts, using non‐Si electron and hole transport layers, has the potential to overcome such drawbacks and simultaneously reduce the cost and/or simplify the fabrication process of c‐Si solar cells. Nevertheless, devices relying on such non‐Si contacts with power conversion efficiencies (PCEs) that rival their classical counterparts are yet to be demonstrated. In this study, one key element is brought forward toward this demonstration by incorporating low‐pressure chemical vapor deposited ZnO as the electron transport layer in c‐Si solar cells. Placed at the rear of the device, it is found that rather thick (75 nm) ZnO film capped with LiFx/Al simultaneously enables efficient electron selectivity and suppression of parasitic infrared absorption. Next, these electron‐selective contacts are integrated in c‐Si solar cells with MoOx‐based hole‐collecting contacts at the device front to realize full‐area dopant‐free‐contact solar cells. In the proof‐of‐concept device, a PCE as high as 21.4% is demonstrated, which is a record for this novel device class and is at the level of conventional industrial solar cells.  相似文献   

19.
Increase in incident light and surface modification of the charge transport layer are powerful routes to achieve high-performance efficiency of perovskite solar cells (PSCs) by improving the short-circuit current density (JSC) and charge transport characteristics, respectively. However, few techniques are studied to reduce reflection loss and simultaneously improve the electrical performance of the electron transport layer (ETL). Herein, an inclined fluorine (F) sputtering process to fabricate high-performance PSCs is proposed. The proposed process simultaneously implements the antireflection effect of F coating and the effect of F doping on a TiO2 ETL, which increases the amount of light transmitted into the PSC due to the extremely low refractive index (≈1.39) and drastically improves the electrical properties of TiO2. Consequently, the JSC of the F coating and doping perovskite solar cell (F-PSC) increased from 25.05 to 26.01 mA cm−2, and the power conversion efficiency increased from 24.17% to 25.30%. The unencapsulated F-PSC exhibits enhanced air stability after 900 h of exposure to ambient environment atmosphere (30% relative humidity, 25 °C under dark condition). The inclined F sputtering process in this study can become a universal method for PSCs from the development stage to commercialization in the future.  相似文献   

20.
Mixed cation hybrid perovskites such as CsxFA1?xPbI3 are promising materials for solar cell applications, due to their excellent photoelectronic properties and improved stability. Although power conversion efficiencies (PCEs) as high as 18.16% have been reported, devices are mostly processed by the anti‐solvent method, which is difficult for further scaling‐up. Here, a method to fabricate CsxFA1?xPbI3 by performing Cs cation exchange on hybrid chemical vapor deposition grown FAPbI3 with the Cs+ ratio adjustable from 0 to 24% is reported. The champion perovskite module based on Cs0.07FA0.93PbI3 with an active area of 12.0 cm2 shows a module PCE of 14.6% and PCE loss/area of 0.17% cm?2, demonstrating the significant advantage of this method toward scaling‐up. This in‐depth study shows that when the perovskite films prepared by this method contain 6.6% Cs+ in bulk and 15.0% at the surface, that is, Cs0.07FA0.93PbI3, solar cell devices show not only significantly increased PCEs but also substantially improved stability, due to favorable energy level alignment with TiO2 electron transport layer and spiro‐MeOTAD hole transport layer, increased grain size, and improved perovskite phase stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号