首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material not only because of its environmentally benign and earth-abundant constituents, but also its outstanding photoelectronic properties. Unfortunately, the significant open-circuit voltage (Voc) loss and inferior fill factor (FF) resulting from abundant nonradiative carrier recombination at depletion region has become a major obstacle for further improving device performance. Here, an effective strategy to passivate the deep trap and band-tail states in the heterojunction is proposed, by modifying the CZTSSe absorber layer with GeSe2 post-deposition treatment. The results reveal that the Ge4+ can migrate into the front surface of the absorber, which plays an active role in suppressing the CuSn deep defects and [2CuZn+SnZn] defect clusters, accordingly dramatically reducing severe interfacial nonradiative carrier recombination of CZTSSe photovoltaic device. Under optimal treatment conditions, the CZTSSe solar cell efficiency increases from 10.36% to 12.22%, mainly benefitting from the increasement of Voc and FF.  相似文献   

2.
The double gradient bandgap absorber has the potential to enhance carrier collection, improve light collection efficiency, and make the performance of solar cells more competitive. However, achieving the double gradient bandgap structure is challenging due to the comparable diffusion rates of cations during high-temperature selenization in kesterite Cu2ZnSn(S,Se)4 (CZTSSe) films. Here, it has successfully achieved a double gradient bandgap in the CZTSSe absorber by spin-coating the K2S solution during the preparation process of the precursor film. The K2S insertion serves as an additional S source for the absorber, and the high-affinity energy of K-Se causes the position of the spin-coated K2S solution locally Se-rich and S-poor. More importantly, the position of the bandgap minimum (notch) and the depth of the notch can be controlled by varying the concentration of K2S solution and its deposition stage, thereby avoiding the electronic potential barrier produced by an inadvertent notch position and depth. In addition, the K─Se liquid phase expedites the selenization process to the elimination of the fine grain layer. The champion CZTSSe device achieved an efficiency of 13.70%, indicating the potential of double gradient bandgap engineering for the future development of high-efficiency kesterite solar cells.  相似文献   

3.
Understanding the electrically active defects in kesterite Cu2ZnSn(S,Se)4(CZTSSe) is critical for the continued development of solar cells based on this material, but challenging due to the complex nature of this polycrystalline multinary material. A comparative study of CZTSSe alloys with three different bandgaps, made by introducing different fractions of sulfur during the annealing process, is presented. Using admittance spectroscopy, drive level capacitance profiling, and capacitance‐voltage profiling, the dominant defect energy level present in the low sulfur content device is determined to be 0.134 eV above the valence band maximum, with a bulk defect density of 8 × 1014 cm?3, while the high sulfur content device shows a deeper defect energy level of 0.183 eV and a higher bulk defect density, 8.2 × 1015 cm?3. These findings are consistent with the current density–voltage characteristics of the resulting solar cells and their external quantum efficiency. It suggests that as the sulfur content increases, the bandgap of the absorber is enlarged, leading to an increasing open‐circuit voltage (Voc), that is accompanied by stronger recombination due to the higher defect density of the sulfur‐rich absorber. This is reflected in large Voc deficit and poor carrier collection of the high sulfur content device.  相似文献   

4.
Nanocrystal‐based Cu2Zn(SnyGe1‐y)(SxSe4‐x) (CZTGeSSe) thin‐film solar cell absorbers with tunable band gap have been prepared. Maximum solar‐conversion total area efficiencies of up to 9.4% are achieved with a Ge content of 30 at.%. Improved performance compared with similarly processed films of Cu2ZnSn(SxSe4‐x) (CZTSSe, 8.4% efficiency) is achieved through controlling Ge loss from the bulk of the absorber film during the high‐temperature selenization treatment, although some Ge loss from the absorber surface is still observed following this step. Despite limitations imposed by elemental losses present at the absorber surface, we find that Ge alloying leads to enhanced performance due to increased minority charge carrier lifetimes as well as reduced voltage‐dependent charge carrier collection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Improving the efficiency of kesterite (Cu2ZnSn(S,Se)4; CZTSSe) solar cells requires understanding the effects of Na doping. This paper investigates these effects by applying a NaF layer at various positions within precursors. The NaF position is important because Na produces Na-related defects in the absorber and suppresses the formation of intrinsic defects. By investigating precursors with various NaF positions, the sulfo-selenization mechanism and the characteristics of defect formation are confirmed. Applying a NaF layer onto a Zn layer in a CZTSSe precursor limits Zn diffusion and suppresses Cu-Zn alloy formation, thus changing the sulfo-selenization mechanism. In addition, the surface NaF layer provides reactive Se and S to the absorber layer by generating Na2Sex and Na2Sx liquid phases during sulfo-selenization, thus limiting the incorporation of Na into the absorber and reducing the Na effects. Efficiency values of 11.16% and 11.19% are obtained for a flexible CZTSSe solar cell by applying NaF between the Zn layer and back contact and between the Cu and Sn layers, respectively. This study presents methods for doping with alkali metals and improving the efficiency of photovoltaics.  相似文献   

6.
Abundant intrinsic defects and defect clusters in Cu2ZnSn(S,Se)4 (CZTSSe) solar cells lead to severe nonradiative recombination and limited photoelectric performance. Therefore, developing effective method to suppress the detrimental defects is the key to achieve high-efficiency solar cell. Herein, a convenient two-step cooling strategy in selenization process is reported to suppress the CuZn and SnZn defects and defect clusters synergistically. The results show that rapid cooling during section from selenization temperature to turning temperature can inhibit the volatilization of Sn and restrain the corresponding Sn-related defects, while slow cooling during the subsequent temperature section can reduce the degree of Cu-Zn disorder. Benefitting from the synergistic effect of two-step cooling, a significantly lowered concentration of SnZn and CuZn defect and their defect clusters [2CuZn+SnZn] in absorber is observed, meanwhile, a reduced band tailing effect and promoted carrier collection efficiency of the photovoltaic device is obtained. Finally, a device with improved open-circuit voltage (Voc) of 505.5 mV and efficiency of 12.87% is achieved. This study demonstrates the impact of cooling process on defects controlling for the first time and provides a simple and effective new strategy for intrinsic defect control, which may be universal in other inorganic thin film solar cells.  相似文献   

7.
The large open-circuit voltage deficit (Voc,def) is the key issue that limits kesterite (Cu2ZnSn(S,Se)4, [CZTSSe]) solar cell performance. Substitution of Cu+ by larger ionic Ag+ ((Ag,Cu)2ZnSn(S,Se)4, [ACZTSSe]) is one strategy to reduce Cu–Zn disorder and improve kesterite Voc. However, the so far reported ACZTSSe solar cell has not demonstrated lower Voc,def than the world record device, indicating that some intrinsic defect properties cannot be mitigated using current approaches. Here, incorporation of Ag into kesterite through a dimethyl sulfoxide (DMSO) solution that can facilitate direct phase transformation grain growth and produce a uniform and less defective kesterite absorber is reported. The same coordination chemistry of Ag+ and Cu+ in the DMSO solution results in the same reaction path of ACZTSSe to CZTSSe, resulting in significant suppression of CuZn defects, its defect cluster [2CuZn + SnZn], and deep level defect CuSn. A champion device with an efficiency of 12.5% (active area efficiency 13.5% without antireflection coating) and a record low Voc,def (64.2% Shockley–Queisser limit) is achieved from ACZTSSe with 5% Ag content.  相似文献   

8.
As containing earth-abundant elements,kesterite (Cu2Zn-Sn(S,Se)4,CZTSSe) semiconductors have great potential to be low-cost and environmental-friendly inorganic absorbers.However,the record power conversion efficiency (PCE) for CZTSSe solar cells is only 12.6%[1,2],much lower than that for Cu(In,Ga)Se2 (CIGS) solar cells (23.35%)[3].The key issue for kes-terite solar cells is the large open-circuit voltage deficit(Voc,def,the gap between Voc and Shockley-Queisser limit VocsQ) or small Voc gain (Voc/VocSQ).The Voc/VocSQ is higher than 85% for high-performance CIGS solar cells but only 61%for current world-record CZTSSe device[2].Many factors may cause the Voc loss of kesterite:(1) the narrow phase stability makes it difficult to achieve highly uniform absorber composi-tion,which can result in bandgap fluctuation and secondary phases;(2) the similar ionic size of Cu and Zn leads to high con-centration of Cu-Zn antisite defects (Cu-Zn disorder),which may cause electrostatic potential fluctuation and band tail-ing;(3) the multi-element composition and the variable valence of Sn lead to complicated defect property,causing seri-ous recombination in absorber bulk and interfaces[4-8].Identi-fy the most critical one and its origin is crucial for further im-proving device efficiency.  相似文献   

9.
Optimization of the back contact interface is crucial for improving the performance of Cu2ZnSnS4 (CZTS) thin film solar cells. In this paper, self-depleted CuSCN is deployed as an intermediate layer at the Mo/CZTS interface to improve the quality of the back contact. This CuSCN layer, obtained via aqueous solution processing, reduces the thickness of Mo(S,Se)2 and eliminates multi-layer crystallization of the absorber by suppressing the undesirable reaction between Mo and Se during the selenization process. By regulating the selenium infiltration into the CZTS precursor films during the selenization process, highly crystalline, single-layer Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers are realized. The single-layer CZTSSe absorber exhibits reduced carrier recombination, enhanced carrier density and increased work function. The improved back contact and absorber layer enables 11.1% power-conversion-efficiency to be achieved.  相似文献   

10.
Major challenge for the fabrication of kesterite absorber thin films such as CZTSSe (Cu2ZnSn(S,Se)4) is the volatility of chalcogens. Material loss and poor morphology are two key issues during high temperature annealing, carried out for the formation of CZTSSe thin film absorber layers. The purpose of the present study is to investigate the influence of capping during the crystallization of precursor to CZTSSe films via annealing. In this work, initial precursor was synthesized from elemental constituents by ball milling. CZTSSe films were deposited by doctor's blade process. Annealing was carried out in two different atmosphere viz. vacuum and inert gas. Both sets of samples were annealed with and without capping. We found significant changes for different annealing atmospheres. Capping has a positive influence on the film properties, revealed by structural, morphological and compositional analysis. Capping reduced material loss of volatile constituents and resulted compact crystalline films.  相似文献   

11.
The photovoltaic performance of the environmentally friendly Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is lower than its predecessor Cu(In,Ga)Se2 solar cells. Severe carrier recombination at the CZTSSe/CdS interface is one major reason that results in a large open-circuit voltage loss. Doping zinc into CdS is a feasible strategy to modifying the CdS buffer layer film, but the present methods are not satisfactory. In this study, novel zinc incorporation strategy is developed to deposit a gradient composition ternary ZnxCd1–xS buffer layer for optimizing the heterojunction interface. The application of gradient composition ZnxCd1–xS buffer layer constructs a gradient conduction band energy configuration in the CZTSSe/buffer layer interface, which highly reduces the interface recombination. The suppressed interface recombination contributes to the enhanced open circuit voltage and device performance. Consequently, the CZTSSe solar cell based on gradient composition ZnxCd1–xS buffer layers achieves champion efficiency of 12.35% with VOC of 504.81 mV, JSC of 36.90 mA cm−2, and FF of 66.28%. It is worth noting that flammable and the toxic hydrazine solvent are replaced by the safe and low-toxic 2-methoxyethanol, making it more promising for the future commercialization of CZTSSe solar cells.  相似文献   

12.
A power conversion efficiency record of 10.1% was achieved for kesterite absorbers, using a Cu2ZnSn(Se,S)4 thin‐film solar cell made by hydrazine‐based solution processing. Key device characteristics were compiled, including light/dark J–V, quantum efficiency, temperature dependence of Voc and series resistance, photoluminescence, and capacitance spectroscopy, providing important insight into how the devices compare with high‐performance Cu(In,Ga)Se2. The record kesterite device was shown to be primarily limited by interface recombination, minority carrier lifetime, and series resistance. The new level of device performance points to the significant promise of the kesterites as an emerging and commercially interesting thin‐film technology. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Suppressing the band tailing and nonradiative recombination caused by massive defects and defect clusters is crucial for mitigating open-circuit voltage (Voc) deficit and improving the device performance of CZTSSe thin film solar cells. Cation substitution is one of the most commonly used strategies to address the above issues. The latest world record efficiency of 13.0% is obtained through this strategy (Ag substitution for Cu). Nevertheless, the importance of the approach to implementing metallic ion doping is easily overlooked by researchers. Here, different approaches are adopted to realize Ga doping and the differences in the efficacy and mechanism are thoroughly investigated. It is found that the secondary phase easily emerged when the physical-based method is employed, and thus challenging to regulate the doping effect. In the case of the chemical-based method, Ga doping can enlarge the depletion region widthand lower the defect activation energyand Urbach energy. Furthermore, GaSn defects located at grain boundaries can expand the energy band bending between GBs and grain interiors (GIs), thereby suppressing the deep defect states and nonradiative recombination. Consequently, power conversion efficiency as high as 12.12% with a Voc of 522 mV is achieved at 2% Ga doping.  相似文献   

14.
A method for fabricating high‐efficiency Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is presented, and it is based on a non‐explosive, low‐cost, and simple solution process followed by a two‐step heat treatment. 2‐Methoxyethanol was used as a solvent, and Cu, Zn, Sn, chloride salts, and thiourea were used as solutes. A CZTSSe absorber was prepared by sulfurising and then selenising an as‐coated Cu2ZnSnS4 (CZTS) film. Sulfurisation in a sulfur vapour filled furnace for a long time (2 h) enhanced the crystallisation of the as‐coated CZTS film and improved the stability of the CZTS precursor, and selenisation promoted further grain growth to yield a void‐free CZTSSe film. Segregation of Cu and S at the grain boundaries, the absence of a fine‐grain bottom layer, and the large grain size of the CZTSSe absorber were the main factors that enhanced the grain‐to‐grain transport of carriers and consequently the short‐circuit current (Jsc ) and efficiency. The efficiency of the CZTS solar cell was 5.0%, which increased to 10.1% after selenisation. For the 10.1% CZTSSe solar cell, the external quantum efficiency was approximately 80%, the open‐circuit voltage was 450 mV, the short‐circuit current was 36.5 mA/cm2, and the fill factor was 61.9%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Trap states in semiconductors usually degrade charge separation and collection in photovoltaics due to trap‐mediated nonradiative recombination. Here, it is found that perovskite can be heavily doped in low concentration with non‐ignorable broadband infrared absorption in thick films and their trap states accumulate electrons through infrared excitation and hot carrier cooling. A hybrid one‐sided abrupt perovskite/TiO2 p‐N heterojunction is demonstrated that enables partial collection of these trap‐filled charges through a tunneling process instead of detrimental recombination. The tunneling is from broadband trap states in the wide depleted p‐type perovskite, across the barrier of the narrow depleted TiO2 region (<5 nm), to the N‐type TiO2 electrode. The trap states inject carriers into TiO2 through tunneling and produce around‐unity peak external quantum efficiency, giving rise to near‐infrared photovoltaics. The near‐infrared response allows photodetecting devices to work in both diode and conductor modes. This work opens a new avenue to explore the near‐infrared application of hybrid perovskites.  相似文献   

16.
Facile electron injection and extraction are two key attributes desired in electron transporting layers to enhance the efficiency of planar perovskite solar cells. Herein it is demonstrated that the incorporation of alkali metal dopants in mesoporous TiO2 can effectively modulate electronic conductivity and improve the charge extraction process by counterbalancing oxygen vacancies acting as nonradiative recombination centers. Moreover, sulfate bridges (SO42?) grafted on the surface of K‐doped mesoporous titania provide a seamless integration of absorber and electron‐transporting layers that accelerate overall transport kinetics. Potassium doping markedly influences the nucleation of the perovskite layer to produce highly dense films with facetted crystallites. Solar cells made from K:TiO2 electrodes exhibit power conversion efficiencies up to 21.1% with small hysteresis despite all solution coating processes conducted under ambient air conditions (controlled humidity: 25–35%). The higher device efficiencies are attributed to intrinsically tuned electronic conductivity and chemical modification of grain boundaries enabling uniform coverage of perovskite films with large grain size.  相似文献   

17.
The development of kesterite Cu2ZnSn(S,Se)4 thin‐film solar cells is currently hindered by the large deficit of open‐circuit voltage (Voc), which results from the easy formation of CuZn antisite acceptor defects. Suppressing the formation of CuZn defects, especially near the absorber/buffer interface, is thus critical for the further improvement of kesterite solar cells. In this paper, it is shown that there is a large disparity between the defects in Cu‐ and Ag‐based kesterite semiconductors, i.e., the CuZn or CuCd acceptor defects have high concentration and are the dominant defects in Cu2ZnSn(S,Se)4 or Cu2CdSnS4, but the AgZn acceptor has only a low concentration and the dominant defects are donors in Ag2ZnSnS4. Therefore, the Cu‐based kesterites always show p‐type conductivity, while the Ag‐based kesterites show either intrinsic or weak n‐type conductivity. Based on this defect disparity and calculated band alignment, it is proposed that the Voc limit of the kesterite solar cells can be overcome by alloying Cu2ZnSn(S,Se)4 with Ag2ZnSn(S,Se)4, and the composition‐graded (Cu,Ag)2ZnSn(S,Se)4 alloys should be ideal light‐absorber materials for achieving higher efficiency kesterite solar cells.  相似文献   

18.
Two key strategies for enhancing the efficiency of Cu(In,Ga)Se2 solar cells are the bandgap gradient across the absorber and the incorporation of alkali atoms. The combined incorporation of Na and Rb into the absorber has brought large efficiency gains compared to Na-containing or alkali-free layers. Here, transient absorption spectroscopy is employed to study the effect of NaF or combined NaF+RbF postdeposition treatments (PDT) on minority carrier dynamics in different excitation volumes of typical composition-graded Cu(In,Ga)Se2 solar cells. Electron lifetimes are found to be highly dependent on the film composition and morphology, varying from tens of nanoseconds in the energy notch to only ≈100 ps in the Ga-rich region near the Mo-back contact. NaF PDT improves recombination lifetimes by a factor of 2–2.5 in all regions of the absorber, whereas the effectiveness of the RbF PDT is found to decrease for higher Ga-concentrations. Electron mobility measured in the absorber region with large grains is promoted by both alkali PDTs. The data suggest that NaF PDT passivates shallow defect states (Urbach tail) throughout the Cu(In,Ga)Se2 film (including the interior of large grains), whereas the additional RbF PDT is effective at grain boundary surfaces (predominantly in regions with medium to low Ga-concentrations).  相似文献   

19.
Cu2ZnSnS4 (CZTS) nanoparticle inks synthesized by the injection of metal precursors into a hot surfactant offer an attractive route to the fabrication of Earth‐abundant Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaic absorber layers. In this work it is shown that the chemical reaction conditions used to produce CZTS nanoparticle inks have a fundamental influence on the performance of thin film solar cells made by converting the nanoparticles to large CZTSSe grains in a selenium rich atmosphere and subsequent cell completion. The reaction time, temperature and cooling rate of the nanoparticle fabrication process are found to affect doping level, secondary phases and crystal structure respectively. Specifically, prolonging the reaction offers a new route to increase the concentration of acceptor levels in CZTSSe photovoltaic absorbers and results in higher device efficiency through an increase in the open circuit voltage and a reduction in parasitic resistance. Quenching the reaction by rapid cooling introduces a wurtzite crystal structure in the nanoparticles which significantly degrades the device performance, while elevating the reaction temperature of the nanoparticle synthesis introduces a secondary phase Cu2SnS3 in the nanoparticles and results in the highest cell efficiency of 6.26%. This is correlated with increased doping in the CZTSSe absorber and the results demonstrate a route to controlling this parameter. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

20.
Polycrystalline CuIn1−xGaxSe2 (CIGS) thin films were deposited by the non‐vacuum, near‐atmospheric‐pressure selenization of stacked metallic precursor layers. A study was carried out to investigate the influence of significant factors of the absorber on the solar cells performance. An efficiency enhancement was obtained for Cu/(In+Ga) atomic ratios between 0·93 and 0·95. The slope of the observed energy bandgap grading showed a strong influence on the VOC and the short circuit current density JSC. An increase of the Ga content in the active region of the absorber was achieved by the introduction of a thin Ga layer on the Mo back contact. This led to an improvement of efficiency and VOC. Furthermore, an enhanced carrier collection was detected by quantum efficiency measurements when the absorber layer thickness was slightly decreased. Conversion efficiencies close to 10% have been obtained for these devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号