首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The µW-level power density of flexible piezoelectric energy harvesters (FPEHs) restricts their potential in applications related to high-power multifunctional wearable devices. To overcome this challenge, a hierarchical design strategy is proposed by forming porous piezoceramics with an optimum microstructure into an ordered macroscopic array structure to enable the construction of high performance FPEHs. The porous piezoceramic elements allows optimization of the sensing and harvesting Figure of merit, and the array structure causes a high level of effective strain under a mechanical load. The introduction of a network of polymer channels between the piezoceramic array also provides increased device flexibility, thereby allowing the device to attach and conform to the curved contours of the human body. The unique hierarchical piezoceramic array architecture exhibits superior flexibility, a high open circuit voltage (618 V), high short circuit current (188 µA), and ultrahigh power density (19.1 mW cm−2). This energy density value surpasses previously reported high-performance FPEHs. The ultrahigh power flexible harvesting can charge a 0.1 F supercapacitor at 2.5 Hz to power high-power electronic devices. Finally, the FPEH is employed in two novel applications related to fracture healing monitoring and self-powered wireless position tracking in extreme environments.  相似文献   

2.
Electronic textiles and functional fabrics are among the key constituents envisioned for wearable electronics applications. For e-textiles, the challenge is to process materials of desired electronic properties such as piezoelectricity into fibers to be integrated as wefts or wraps in the fabrics. Nylons, first introduced in the 1940s for stockings, are among the most widely used synthetic fibers in textiles. However, realization of nylon-based e-textiles has remained elusive due to the difficulty of achieving the piezoelectric phase in the nylon fibers. Here, piezoelectric nylon-11 fibers are demonstrated and it is shown that the resulting fibers are viable for applications in energy harvesting from low frequency mechanical vibrations and in motion sensors. A simulation study is presented that elucidates on the sensitivity of the nylon-11 fibers toward external mechanical stimuli. Moreover, a strategy is proposed and validated to significantly boost the electrical performance of the fibers. Since a large fraction of the textile industry is based on nylon fibers, the demonstration of piezoelectric nylon fibers will be a major step toward realization of electronic textiles for applications in apparels, health monitoring, sportswear, and portable energy generation.  相似文献   

3.
Flexible materials with high electromechanical coupling performance are highly demanded for wide applications for electromechanical sensors and transducers, including mechanical energy harvesters. Here, outstanding electromechanical performance is obtained in electrospun‐aligned polyvinylidene fluoride (PVDF) fiber film. A theoretical model is developed from systematic theoretical analyses to clarify the underlying constructive piezoelectric‐triboelectric mechanism in the polarized PVDF fiber films that explains the experimental observations well. The electrospinning process induces polarization alignment and thus tunes the electron affinity for PVDF fibers with different polarization terminals, which results in the constructive piezoelectric and triboelectric responses in the obtained PVDF fiber films. Extremely large effective piezoelectric performance properties are achieved in the direct piezoelectric measurements, reaching the maximum effective piezoelectric strain and voltage coefficients of ?1065 pm V?1 and ?9178 V mm N?1, respectively, at 100 Hz. In the converse piezoelectric measurements without a significant contribution from reversible triboelectric effect, the maximum effective piezoelectric strain and voltage coefficients are ?166 pm V?1 and ?1499 V mm N?1, respectively. The theoretical analyses and experimental results show the great potential of the electrospun aligned polar PVDF fiber material for various electromechanical device applications, particularly for mechanical energy harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号