首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Facile removal of adsorbed gas bubbles from electrode surfaces is crucial to realize efficient and stable energy conversion devices based on electrochemical gas evolution reactions. Conventional studies on bubble removal have limited applicability and scalability due to their reliance on complex and energy/time-intensive processes. In this study, a simple and versatile method is reported to fabricate large-area superaerophobic electrodes (up to 100 cm2) for diverse gas evolution reactions using the gel-like aerophobic surface system (GLASS). GLASS electrodes are readily and uniformly fabricated by simple spin-coating and cross-linking of polyallylamine on virtually any kinds of electrodes within 5 min under ambient conditions. Intrinsically hydrophilic gel overlayers with interconnected open pores allow the physical separation of bubble adhesion and catalytic active sites, reducing bubble adhesion strength, and promoting the removal of gas bubbles. As a result, GLASS electrodes exhibit greatly enhanced efficiency and stability for diverse gas evolution reactions, such as hydrogen evolution, hydrazine oxidation, and oxygen evolution reactions. This study provides deeper insights into understanding the effect of the hydrophilic microenvironment on gas evolution reactions and designing practical electrochemical devices.  相似文献   

2.
    
Developing efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER) is critical to the commercial viability of electrochemical clean energy technologies. Transition metal phosphides (TMPs), with the merits of abundant reserves, unique structure, tunable composition, and high electronic conductivity, are recognized as attractive HER catalytic materials. Nevertheless, the HER electrocatalytic activity of TMPs is still limited by various thorough issues and inherent performance bottlenecks. In this review, these issues are carefully sorted, and the corresponding reasonable explanations and solutions are elucidated on the basis of the HER catalytic activity origins of TMPs. Subsequently, highly targeted multiscale strategies to improve the HER performance of TMPs are comprehensively presented. Additionally, critical scientific issues for constructing high-efficiency TMP-based electrocatalysts are proposed. Finally, the HER reaction process, catalytic mechanism research, TMP-based catalyst construction, and their application expansion are mentioned as challenges and future directions for this research field. Expectedly, this review offers professional and targeted guidelines for the rational design and practical application of TMP-based HER catalysts.  相似文献   

3.
    
The ever-rising concerns with regards to energy shortages and climate change have made the search for clean and renewable energy sources a pressing priority for the sustainable development of societies. Although, conventional precious metal-based catalysts such as platinum, iridium, and ruthenium are able to efficiently catalyze the conversion of chemical to electrical energy, they are often very costly, scarce, and suffer from poor stability, hence impeding their widespread applications. The limitations of the current state-of art catalysts have propelled tremendous efforts in search for alternative catalysts. Notably, transition metal dichalcogenides (TMDs) have spurred much enthusiasm because of their natural abundance, low cost, and remarkable catalytic activity. Numerous studies have recounted that doping can tune the properties of TMDs and that vanadium dopants reportedly improve the electrical properties of Group 6 TMDs. Herein, the authors aspire to investigate the effects of doping varying amounts of vanadium on molybdenum dichalcogenides on their electrocatalytic activities toward hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. Despite previous studies bespeaking promising effects, the results here demonstrate both improvements and worsening of electrocatalytic performances from varying the stoichiometry of vanadium dopants in molybdenum dichalcogenides, depending on the type of materials and intended electrochemical applications.  相似文献   

4.
    
Reducing the particle sizes of transition metals (TMs) and avoiding their aggregation are crucial for increasing the TMs atom utilization and enhancing their industrial potential. However, it is still challenging to achieve uniform distributed and density-controlled TMs nanoclusters (NCs) under high temperatures due to the strong interatomic metallic bonds and high surface energy of NCs. Herein, a series of TMs NCs with controllable density and nitrogen-modulated surface are prepared with the assistance of a selected covalent organic polymer (COP), which can provide continuous anchoring sites and size-limited skeletons. The prepared Ir NCs show superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities than commercial Pt/C and Ir/C in both acid and alkaline media. In particular, the as-prepared Ir NCs exhibit remarkable full water splitting performance, reaching a current density of 10 mA cm−2 at ultralow overpotentials of 1.42 and 1.43 V in alkaline and acidic electrolyte, respectively. The excellent electrocatalytic activities are attributed to the increased surface atom utilization and the improved intrinsic activity of Ir NCs. More importantly, the Ir NCs catalyst shows superior long-term stability due to the strong interaction between Ir NCs and the N-doped carbon layer.  相似文献   

5.
    
The electrocatalytic production of hydrogen from seawater provides a low-cost way to realize energy conversion, but is restricted by high potential for seawater electrolysis and the chlorine oxidation reaction (ClOR) at the anode. Here, the self-growth of Mo-doped Ni2P nanosheet arrays with rich P vacancies on molybdenum-nickel foam (MNF) (Mo-Ni2Pv@MNF) is reported as bifunctional catalyst for Cl-free hydrogen production by coupling hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) in seawater. Impressively, the Mo-Ni2Pv@MNF electrode as bifunctional catalyst has an excellent activity for overall hydrazine splitting (OHzS) with an ultralow voltage of only 571 mV at 1000 mA cm−2 and can maintain stability for an ultra-long time of 1000 h at 100 mA cm−2. Moreover, integration of OHzS into self-assembled hydrazine fuel cells (DHzFC) or solar cells can enable the self-powered H2 production. The industrial hydrazine sewage as feed for the above eletrolysis system can be degraded to ≈5 ppb rapidly. Density functional thoery calculations demonstrate that the electronic structure modulation induced by P vacancies and Mo doping can not only achieve thermoneutral ΔGH* for hydrogen evolution reaction but also enhance dehydrogenation kinetics from *N2H4 to *NHNH2 for HzOR, achieving enhanced dehydrogenation kinetics.  相似文献   

6.
    
Adipic acid (AA) is a crucial feedstock for nylon polymers, and is industrially produced by thermal oxidation of cyclohexanone/cyclohexanol mixture (KA oil). However, this process consumes large quantities of corrosive nitric acid as oxidants, while emits ozone-depleting greenhouse gas N2O. Here, an electrocatalytic strategy for selective oxidation of KA oil to AA coupled with H2 evolution over a Co3O4/graphdiyne cooperative catalyst (Co3O4/GDY) is reported. The Co3O4/GDY displays high electrooxidation activity of KA oil to AA (100 mA cm−2 at ≈1.5 V vs RHE), outperforming all the reported findings. Detailed ex situ and in situ experimental studies, theoretical calculations, and molecular dynamic simulations reveal that GDY not only facilitates the enrichment of cyclohexanone on the catalyst surface in aqueous medium, but also upshifts the d-band center of Co sites, strengthening the adsorption/activation of cyclohexanone. This study offers a green route for AA synthesis and proposes a GDY interface engineering strategy for efficient electrooxidation.  相似文献   

7.
Designing well-defined interfacial chemical bond bridges is an effective strategy to optimize the catalytic activity of metal–organic frameworks (MOFs), but it remains challenging. Herein, a facile in situ growth strategy is reported for the synthesis of tightly connected 2D/2D heterostructures by coupling MXene with CoBDC nanosheets. The multifunctional MXene nanosheets with high conductivity and ideal hydrophilicity as bridging carriers can ensure structural stability and sufficient exposure to active sites. Moreover, the Co–O–Ti bond bridging formed at the interface effectively triggers the charge transfer and modulates the electronic structure of the Co-active site, which enhances the reaction kinetics. As a result, the optimized CoBDC/MXene exhibits superior hydrogen evolution reaction (HER) activity with low overpotentials of 29, 41, and 76 mV at 10 mA cm−2 in alkaline, acidic, and neutral electrolytes, respectively, which is comparable to commercial Pt/C. Theoretical calculation demonstrates that the interfacial bridging-induced electron redistribution optimizes the free energy of water dissociation and hydrogen adsorption, resulting in improved hydrogen evolution. This study not only provides a novel electrocatalyst for efficient HER at all pH conditions but also opens up a new avenue for designing highly active catalytic systems.  相似文献   

8.
    
Platinum (Pt) is regarded as a promising electrocatalyst for hydrogen evolution reaction (HER). However, its application in an alkaline medium is limited by the activation energy of water dissociation, diffusion of H+, and desorption of H*. Moreover, the formation of effective structures with a low Pt usage amount is still a challenge. Herein, guided by the simulation discovery that the edge effect can boost local electric field (LEF) of the electrocatalysts for faster proton diffusion, platinum nanocrystals on the edge of transition metal phosphide nanosheets are fabricated. The unique heterostructure with ultralow Pt amount delivered an outstanding HER performance in an alkaline medium with a small overpotential of 44.5 mV and excellent stability for 80 h at the current density of −10 mA cm−2. The mass activity of as-prepared electrocatalyst is 2.77 A mg−1Pt, which is 15 times higher than that of commercial Pt/C electrocatalysts (0.18 A mg−1Pt). The density function theory calculation revealed the efficient water dissociation, fast adsorption, and desorption of protons with hybrid structure. The study provides an innovative strategy to design unique nanostructures for boosting HER performances via achieving both synergistic effects from hybrid components and enhanced LEF from the structural edge effect.  相似文献   

9.
    
Exploring efficient electrocatalysts for oxygen evolution reaction (OER) is an urgent need to advance the development of sustainable energy conversion. Though defect engineering is considered an effective strategy to regulate catalyst activity for enhanced OER performance, the controllable synthesis of defective oxides electrocatalysts remains challenging. Here, oxygen defects are introduced into NiCo2O4 nanorods by an electrochemical lithiation strategy. By tuning in situ lithiation potentials, the concentration of oxygen defects and the corresponding catalytic activity can be feasibly regulated. In addition, the relationship between the changes in the defect density and electronic structure and the lithiation cut-off voltages is revealed. The results show that NiCo2O4 nanorods undertook intercalation and two-step conversion reaction, in which the lithiation-induced conversion reaction gives rise to a CoO@NiO-based structure with higher defect density and lower oxidation states. As a result, the defective CoO@NiO-based catalyst exhibits exceptional OER activity with an overpotential of 270 mV at 10 mA cm−2, which is about 74 mV below the pristine nanomaterials. This research proposes a novel strategy to explore high-performance catalysts with structural stability and defect control.  相似文献   

10.
    
A challenging task is to promote Ru atom economy and simultaneously alleviate Ru dissolution during the hydrogen evolution reaction (HER) process. Herein, Ru nanograins (≈1.7 nm in size) uniformly grown on 1T-MoS2 lace-decorated Ti3C2Tx MXene sheets (Ru@1T-MoS2-MXene) are successfully synthesized with three types of interfaces (Ru/MoS2, Ru/MXene, and MoS2/MXene). It gives high mass activity of 0.79 mA µgRu−1 at an overpotential of 100 mV, which is ≈36 times that of Ru NPs. It also has a much smaller Ru dissolution rate (9 ng h−1), accounting for 22% of the rate for Ru NPs. Electrochemical tests, scanning electrochemical microscopy measurements combined with DFT calculations disclose the role of triple interface optimization in improved activity and stability. First, 2D MoS2 and MXene can well disperse and stabilize Ru grains, giving larger electrochemical active area. Then, Ru/MoS2 interfaces weakening H* adsorption energy and Ru/MXene interfaces enhancing electrical conductivity, can efficiently improve the activity. Next, MoS2/MXene interfaces can protect MXene sheet edges from oxidation and keep 1T-MoS2 phase stability during the long-term catalytic process. Meanwhile, Ru@1T-MoS2-MXene also displays superior activity and stability in neutral and alkaline media. This work provides a multiple-interface optimization route to develop high-efficiency and durable pH-universal Ru-based HER electrocatalysts.  相似文献   

11.
    
Ru has recently been considered as a promising alternative of Pt toward hydrogen oxidation reaction (HOR) due to its lower price and similar hydrogen binding energy (HBE) in comparison to Pt. Nevertheless, the catalytic performance of Ru toward HOR is far from the satisfaction of practical application. Herein, it is demonstrated that the modification of Ru multi-layered nanosheet (MLNS) with Ni can significantly promote the HOR performance. In particular, the HOR performance is strongly related to the Ni location on the surface or in the lattice of Ru MLNS. Experimental and theoretical investigations suggest that Ni in the lattice of Ru MLNS (lattice engineering) optimizes the HBE, while Ni species on the surface (surface engineering) decrease the free energy of water formation, as a result of the significantly enhanced HOR performance. The optimal catalyst, where Ni is located both on the surface and in the lattice, displays superior alkaline HOR performance to commercial Pt/C and Ru/C. The present study not only systematically reveals the significance of Ni modification on Ru toward HOR, but also promotes the fundamental researches on catalyst design for fuel cell reactions and beyond.  相似文献   

12.
    
Engineering oxygen vacancies (Vo) in metal–organic framework (MOF) is considered as an effective strategy to improve the hydrazine oxidation reaction (HzOR) performance. However, the role of Vo and the metal sites for HzOR is still not fully understood. Herein, this study reports the synthesis of a well-defined bimetallic VO-rich benzene dicarboxylic acid-based MOF (NiIr0.03-BDC) as a model to clarify the intricate catalytic mechanism. Operando characterizations demonstrate that the Vo-rich environment favors the adsorption of OH on the catalyst surface during the HzOR process, leading to the formation of Ni(OH)x active species. Theoretical calculations reveal that the introduced Ir at metal nodes not only boosts the HzOR activity of the Ni sites by tuning their electronic structure but also serves as the active sites for hydrogen evolution. As a result, the two-electrode electrolyzer with NiIr0.03-BDC || NiIr0.03-BDC configuration achieved 10 mA cm−2 at an ultralow cell voltage of 0.046 V. This work provides new insights into oxygen vacancy defect engineering of MOFs and paves a solid step for low-energy consumption hydrogen production.  相似文献   

13.
    
Sulfion oxidation reaction holds great potential for replacing kinetically sluggish water oxidation to save power consumption and simultaneously purifying environmental sulfion-rich sewage. However, it is still challenged by the insufficient mechanism understanding and questionable stability caused by sulfur passivation. Here, it is demonstrated that bifunctional Co3S4 nanowires for assembling hybrid seawater electrolyzer that combines anodic sulfion oxidation and cathodic seawater reduction with an ultra-low power consumption of 1.185 kWh m−3 H2 under 100 mA cm−2, saving energy consumption over 70% compared to the traditional water splitting system. Unlike water is oxidized into O2 at high potentials under alkaline water splitting system, experiments combined with in situ characterizations uncover the stepwise oxidation of S2− to short-chain polysulfides and then to value-added product of S8. Density functional theory calculations prove that Co3S4 possesses reduced energy barriers in the rate-determining S32− to S4 oxidation step and S8 desorption step, promoting conversion of short-chain polysulfides and efficient desorption of S8. These findings reveal the catalytic mechanism of sulfion oxidation and inspire an economic approach toward the fabrication of bifunctional Co3S4 for achieving energy-saving hydrogen production from seawater while rapidly disposing sulfion-rich sewage with boosted activity and stability.  相似文献   

14.
过渡金属碳化物,氮化物和硼化物在电子工业中的应用   总被引:2,自引:0,他引:2  
路春娥 《电子器件》1999,22(3):216-222
Ⅳ-Ⅴ族过渡金属与碳C,氮N,硼B形成的化合物电子导电性好,硬度大,熔点高。本文综述了这些过渡金属碳化物,氮化物和硼化物的结构,性能及在电子器件工业中的应用。  相似文献   

15.
    
Coupling urea oxidation reaction (UOR) with hydrogen evolution reaction (HER) is an effective energy-saving technique for hydrogen generation. However, exploring efficient bifunctional electrocatalysts under high current density is still challenging. Herein, hierarchical Fe doped cobalt selenide coupled with FeCo layered double hydroxide (Fe-Co0.85Se/FeCo LDH) array as a self-supported superior bifunctional heterojunction electrode is rationally designed for both UOR and HER. The unique heterostructure facilitates electron transfer and interface interactions through local interfacial Co-Se/O-Fe bonding environment modulation, improving reaction kinetics and intrinsic activity. As a result, the heterostructured electrocatalyst exhibits ultralow potentials of −0.274 and 1.48 V to reach 500 mA cm−2 for catalyzing the HER and UOR, respectively. Particularly, the full urea electrolysis system driven by Fe-Co0.85Se/FeCo LDH delivers 300 mA cm−2 at a relatively low potential of 1.57 V, which is 150 mV lower than the conventional water electrolysis. The combination of in situ characterization and theoretical analysis reveal that the active sites with the adjustable electronic environment are induced by the interfacial bonding of the heterojunction, facilitating the water decomposition of HER and the stabilization of intermediates in UOR. This work inspires the interfacial environment modulation to optimize advanced electrocatalysts for energy-saving H2 production.  相似文献   

16.
    
Development of easy‐to‐make, highly active, and stable bifunctional electrocatalysts for water splitting is important for future renewable energy systems. Three‐dimension (3D) porous Ni/Ni8P3 and Ni/Ni9S8 electrodes are prepared by sequential treatment of commercial Ni‐foam with acid activation, followed by phosphorization or sulfurization. The resultant materials can act as self‐supported bifunctional electrocatalytic electrodes for direct water splitting with excellent activity toward oxygen evolution reaction and hydrogen evolution reaction in alkaline media. Stable performance can be maintained for at least 24 h, illustrating their versatile and practical nature for clean energy generation. Furthermore, an advanced water electrolyzer through exploiting Ni/Ni8P3 as both anode and cathode is fabricated, which requires a cell voltage of 1.61 V to deliver a 10 mA cm?2 water splitting current density in 1.0 m KOH solution. This performance is significantly better than that of the noble metal benchmark—integrated Ni/IrO2 and Ni/Pt–C electrodes. Therefore, these bifunctional electrodes have significant potential for realistic large‐scale production of hydrogen as a replacement clean fuel to polluting and limited fossil‐fuels.  相似文献   

17.
    
High-energy-density and cost-effective lithium-rich oxides (LRO) are considered as the promising cathode materials for the next-generation lithium-ion batteries . Nevertheless, the elevated cut-off voltage and the complex interface interactions have presented significant challenges that can lead to material degradation. Specifically, the inevitable release of lattice oxygen and the highly reactive interface-driven irreversible migration of transition metal (TM) ions in LRO make the construction of a robust interface extremely important. Herein, an effective and efficient coating approach is applied to stabilize the interface structure of LRO by introducing a coordination bond between the strong ligand of polyurethane (PU) and the surface of LRO particles. This functional coating stabilizes the crystal field stabilization energies of LRO by acting as a strong ligand in spectrochemistry to form a coordination bond with Mn4+ in Li2MnO3 at high voltage. Consequently, irreversible oxygen release and TM ions migration are greatly inhibited. Overall, the LRO-PU cathode exhibits superior electrochemical cyclability with a retention of 80.0% at 1C after 300 cycles and enhanced rate capability with a retention of 80.9% at 0.1C after rate cycles, marking a significant step toward commercial implementation.  相似文献   

18.
    
The coordination environment is crucial for the activity of an electrocatalyst, which defines the interaction between the central and adjacent atoms. In traditional 2D MX2 (M = Mo, W, etc., X = S, Se), M is usually coordinated with 6 X atoms in either trigonal prismatic (2H) or octahedral (1T) polyhedrons. With such a coordination configuration, only the edge X sites exhibit activity for hydrogen evolution reaction (HER). Here, a planar-coordination transition metal chalcogenide, PdSe2 is reported, as an efficient electrocatalyst for the HER in an alkaline electrolyte. By reducing the spatial polyhedron coordination to planar polygon coordination, the M sites in PdSe2 can be efficiently activated to interact with the adsorptive intermediates. As a result, both Pd and Se atoms act as active sites for hydrogen evolution with neutral adsorption ability. With an overpotential of 138 mV at 10 mA cm−2, this work advances the exploration of planar-coordination HER electrocatalysts.  相似文献   

19.
20.
    
Defect engineering of 2D transition metal dichalcogenides (TMDCs) is essential to modulate their optoelectrical functionalities, but there are only a few reports on defect‐engineered TMDC device arrays. Herein, the atomic vacancy control and elemental substitution in a chemical vapor deposition (CVD)‐grown molybdenum disulfide (MoS2) monolayer via mild photon irradiation under controlled atmospheres are reported. Raman spectroscopy, photoluminescence, X‐ray, and ultraviolet photoelectron spectroscopy comprehensively demonstrate that the well‐controlled photoactivation delicately modulates the sulfur‐to‐molybdenum ratio as well as the work function of a MoS2 monolayer. Furthermore, the atomic‐resolution scanning transmission electron microscopy directly confirms that small portions (2–4 at% corresponding to the defect density of 4.6 × 1012 to 9.2 × 1013 cm?2) of sulfur vacancies and oxygen substituents are generated in the MoS2 while the overall atomic‐scale structural integrity is well preserved. Electronic and optoelectronic device arrays are also realized using the defect‐engineered CVD‐grown MoS2, and it is further confirmed that the well‐defined sulfur vacancies and oxygen substituents effectively give rise to the selective n‐ and p‐doping in the MoS2, respectively, without the trade‐off in device performance. In particular, low‐percentage oxygen‐doped MoS2 devices show outstanding optoelectrical performance, achieving a detectivity of ≈1013 Jones and rise/decay times of 0.62 and 2.94 s, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号