首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-voltage lithium metal batteries (LMBs) are capable to achieve the increasing energy density. However, their cycling life is seriously affected by unstable electrolyte/electrode interfaces and capacity instability at high voltage. Herein, a hydrofluoric acid (HF)-removable additive is proposed to optimize electrode electrolyte interphases for addressing the above issues. N, N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) aniline (DMPATMB) is used as the electrolyte additive to induce PF6 decomposition to form a dense and robust LiF-rich solid electrolyte interphase (SEI) for suppressing Li dendrite growth. Moreover, DMPATMB can help to form highly Li+ conductive Li3N and LiBO2, which can boost the Li+ transport across SEI and cathode electrolyte interphase (CEI). In addition, DMPATMB can scavenge traced HF in the electrolyte to protect both SEI and CEI from the corrosion. As expected, 4.5 V Li|| LiNi0.6Co0.2Mn0.2O2 batteries with such electrolyte deliver 145 mAh g−1 after 140 cycles at 200 mA g−1. This work provides a novel insight into high-voltage electrolyte additives for LMBs.  相似文献   

2.
Solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) with optimized components and structures are considered to be crucial for lithium-ion batteries. Here, gradient lithium oxysulfide (Li2SOx, x = 0, 3, 4)/uniform lithium fluoride (LiF)-type SEI is designed in situ by using hexafluoroisopropyl trifluoromethanesulfonate (HFPTf) as electrolyte additive. HFPTf is more likely to be reduced on the surface of Li anode in electrolytes due to its high reduction potential. Moreover, HFPTf can make Li+ desolvated easily, leading to the increase in the flux of Li+ on the surface of Li anode to avoid the growth of Li dendrites. Thus, the cycling stability of Li||Li symmetric cells is improved to be 1000 h at 0.5 mA cm−2. In addition, HFPTf-contained electrolyte could make Li||NCM811 batteries with a capacity retention of 70% after 150 cycles at 100 mA g−1, which is attributed to the formation of uniform and stable CEI on the cathode surface for hindering the dissolvation of metal ions from the cathode. This study provides effective insights on the strong ability of additives to adjust electrolytes in “one phase and two interphases” (electrolyte and SEI/CEI).  相似文献   

3.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   

4.
Considerable endeavors are developed to suppress lithium (Li) dendrites and improve the cycling stability of Li metal batteries in order to promote their commercial application. Herein, continuous zinc (Zn) nanoparticles-assembled film with homogenous nanopores is proposed as a modified layer for separator via a scalable method. The in situ formed LiZn alloy film during initial Li plating can serve as a Li+ ion rectification and lithiophilic layer to regulate the nucleation and reverse deposition of Li. When applied in Li|LiFePO4 full cells with traditional carbonate-based electrolyte, the modified separator enables outstanding cycling stability of up to 350 cycles without capacity loss at a large rate of 5 C (3.4 mA cm−2) and a remarkable reversible capacity of 144 mAh g−1 after 120 cycles at a commercial mass loading as high as 19.72 mg cm−2. The excellent electrochemical performances are ascribed to the dendrite-free reverse Li deposition induced by modified layer by means of its lithiophilic property for regulating homogeneous Li nucleation on the separator as well as its well-distributed nanopores for homogenizing Li+ ion flux and enhancing electrolyte wetting.  相似文献   

5.
To enable next‐generation high‐power, high‐energy‐density lithium (Li) metal batteries (LMBs), an electrolyte possessing both high Li Coulombic efficiency (CE) at a high rate and good anodic stability on cathodes is critical. Acetonitrile (AN) is a well‐known organic solvent for high anodic stability and high ionic conductivity, yet its application in LMBs is limited due to its poor compatibility with Li metal anodes even at high salt concentration conditions. Here, a highly concentrated AN‐based electrolyte is developed with a vinylene carbonate (VC) additive to suppress Li+ depletion at high current densities. Addition of VC to the AN‐based electrolyte leads to the formation of a polycarbonate‐based solid electrolyte interphase, which minimizes Li corrosion and leads to a very high Li CE of up to 99.2% at a current density of 0.2 mA cm‐2. Using such an electrolyte, fast charging of Li||NMC333 cells is realized at a high current density of 3.6 mA cm‐2, and stable cycling of Li||NMC622 cells with a high cathode loading of 4 mAh cm‐2 is also demonstrated.  相似文献   

6.
The application of lithium metal batteries (LMBs) is impeded by safety concerns. Employing non-flammable electrolytes can improve battery reliability while the cost and performance deterioration limit their popularization. Herein, a high-performance non-flammable electrolyte is designed, 1.5 m LiTFSI in propylene carbonate (PC)/triethyl phosphate (TEP) (4:1 by vol.) with 4-nitrophenyl trifluoroacetate (TFANP) as the additive, which can facilitate the construction of LiF-rich solid electrolyte interphase (SEI) on Li anode surface and cathode electrolyte interphase (CEI) on cathode surface through its prioritized decomposition. In TFANP-containing electrolyte, the decreased TEP coordination number in the solvation sheath relieves the adverse effect of active TEP on both the SEI and CEI for suppressing the growth of Li dendrites and reducing the continuous electrolyte consumption. Thus, the Li||LiNi0.6Co0.2Mn0.2O2 battery with such an electrolyte can deliver 132 mAh g−1 after 150 cycles with high coulombic efficiency (99.5%) and superior rate performance (110 mAh g−1 at 5 C, 1 C = 200 mA g−1). This work provides a new additive insight on non-flammable electrolyte for reliable LMBs.  相似文献   

7.
Solid polymer electrolytes (SPEs) provide an intimate contact with electrodes and accommodate volume changes in the Li-anode, making them ideal for all-solid-state batteries (ASSBs); however, confined chain swing, poor ion-complex dissociation, and barricaded Li+-transport pathways limit the ionic conductivity of SPEs. This study develops an interpenetrating polymer network electrolyte (IPNE) comprising poly(ethylene oxide)- and poly(vinylidene fluoride)-based networked SPEs (O-NSPE and F-NSPE, respectively) and lithium bis(fluorosulfonyl) imide (LiFSI) to address these challenges. The  CF2 / CF3 segments of the F-NSPE segregate FSI to form connected Li+-diffusion domains, and  C O C segments of the O-NSPE dissociate the complexed ions to expedite Li+ transport. The synergy between O-NSPE and F-NSPE gives IPNE high ionic conductivity (≈1 mS cm−1) and a high Li-transference number (≈0.7) at 30 °C. FSI aggregation prevents the formation of a space-charge zone on the Li-anode surface to enable uniform Li deposition. In Li||Li cells, the proposed IPNE exhibits an exchange current density exceeding that of liquid electrolytes (LEs). A Li|IPNE|LiFePO4 ASSB achieves charge–discharge performance superior to that of LE-based batteries and delivers a high rate of 7 mA cm−2. Exploiting the synergy between polymer networks to construct speedy Li+-transport pathways is a promising approach to the further development of SPEs.  相似文献   

8.
Garnet-type electrolytes demonstrate promising prospects in the field of solid-state lithium batteries owing to their superior ionic conductivity and high (electro)chemical stability toward Li metal, whereas the critical issue of Li dendrite growth and even infiltration throughout garnets limits their practical applications. Herein, a hybrid interlayer consisting of Li3Bi alloy embedded in antiperovskite-type Li3OCl matrix is in situ constructed at Li/Li6.75La3Zr1.75Ta0.25O12 interface by taking the conversion reaction of BiOCl with Li metal. The lithiophilic nature of such interlayer enables an intimate contact of garnet against Li metal, guaranteeing a dramatically reduced interfacial resistance of 27 Ω cm2. In addition, the inside electron-conducting Li3Bi nanoparticles homogenize the interfacial potential distribution, while the outside ion-conducting Li3OCl matrix with a bandgap of 5.06 eV blocks electron tunneling from Li bulk. Profiting from such synergistic effect, the resultant Li symmetric cell displays a high critical current density of 1.1 mA cm−2, along with an ultralong cycling life of 1000 h at 0.5 mA cm−2. Furthermore, the corresponding solid LiNi0.6Co0.2Mn0.2O2/Li cell delivers a high cycling stability for 150 times accompanied by a capacity retention of 82%. This study puts forward a potential solution for construction of functional layers at Li/garnet interfaces by making use of in situ conversion reaction.  相似文献   

9.
How to realize uniform Li+ flow is the key to achieve even Li deposition for lithium metal batteries (LMBs). In this study, a concept of dynamic ion sieve is proposed to design the buffer layer nearby Li anode surface to regulate Li+ spatial arrangement by introducing tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide (TMPB) into the carbonate electrolyte. The buffer layer induced by TMP+ can adjust the velocity of arriving solvated Li+ that gives solvated Li+ sufficient time to redistribute and accumulate on Li anode surface, resulting in a uniform and higher concentrated Li+ flow. Besides, TFSI can participate in the generation of inorganic component-rich solid electrolyte interphase (SEI) with Li3N, which can facilitate the Li+ conductivity of SEI. Consequently, the stable and uniform Li deposition can be obtained, achieving the excellent cycling performance up to 1000 h at 0.5 mA cm−2 in the Li||Li symmetric cell. Besides, the Li||NCM622 full cell also possesses excellent cycling stability with a high-capacity retention rate of 66.7% after 300 cycles.  相似文献   

10.
3D carbon hosts can enable low-stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel-aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long-term stable behavior at low-temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate-based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low-temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries.  相似文献   

11.
Advanced high-energy-density energy storage systems with high safety are desperately demanded to power electric vehicles and smart grids. Li metal batteries (LMBs) can provide a considerable leap in battery energy. Nevertheless, the widespread deployment of Li metal has long been fettered by the unstable solid electrolyte interlayer and uncontrolled Li dendrite growth induced safety concerns. Herein, a flexible and conformal CTF-LiI coating has been rationally coated on Li metal surface to stabilize metallic Li. With the CTF-LiI coating, the Li electrodeposition exhibits a uniform, dense, and dendrite-free manner; however, the side reactions between metallic Li and electrolyte have been effectively suppressed. The Li symmetric cells can run stably for a prolonged cycling over 2500 cycles at 10 mA cm−2, demonstrating a much lower voltage hysteresis. In addition, the Li|Li4Ti5O12 cells can deliver an improved long-time cycling over 250 cycles at 0.05 A g−1. Furthermore, the half cells paired with the organic S cathode also demonstrate an excellent long lifespan stable cycling and a high capacity of 682.2 mAh g−1 retained over 300 cycles with an average capacity decay of ≈0.05% per cycle at 1.0 A g−1. This work demonstrates a significant step toward large-scalable and long-cycling stable LMBs.  相似文献   

12.
Nex-generation high-energy-density storage battery, assembled with lithium (Li)-metal anode and nickel-rich cathode, puts forward urgent demand for advanced electrolytes that simultaneously possess high security, wide electrochemical window, and good compatibility with electrode materials. Herein an intrinsically nonflammable electrolyte is designed by using 1 M lithium difluoro(oxalato)borate (LiDFOB) in triethyl phosphate (TEP) and N-methyl-N-propyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr13][TFSI] ionic liquid (IL) solvents. The introduction of IL can bring plentiful organic cations and anions, which provides a cation shielding effect and regulates the Li+ solvation structure with plentiful Li+-DFOB and Li+-TFSI complexes. The unique Li+ solvation structure can induce stable anion-derived electrolyte/electrode interphases, which effectively inhibit Li dendrite growth and suppress side reactions between TEP and electrodes. Therefore, the LiNi0.9Co0.05Mn0.05O2 (NCM90)/Li coin cell with this electrolyte can deliver stable cycling even under 4.5 V and 60 °C. Moreover, a Li-metal battery with thick NCM90 cathode (≈ 15 mg cm−2) and thin Li-metal anode (≈ 50 µm) (N/P ≈ 3), also reveals stable cycling performance under 4.4 V. And a 2.2 Ah NCM90/Li pouch cell can simultaneously possess prominent safety with stably passing the nail penetration test, and high gravimetric energy density of 470 Wh kg−1 at 4.4 V.  相似文献   

13.
Highly concentrated electrolytes (HCEs) significantly improve the stability of lithium metal anodes, but applications are often impeded by their limitation of density, viscosity, and cost. Here, fluorobenzene (FB), an economical hydrocarbon with low density and low viscosity, is demonstrated as a bifunctional cosolvent to obtain a novel FB diluted highly concentrated electrolyte (FB-DHCE). First, the addition of FB suppresses the decomposition of dimethoxyethane (DME) on the Li metal by strengthening the interactions of DME and FSI around Li+. Second, FB efficiently elevates the content of LiF in the solid electrolyte interphase (SEI) based on its electrochemical reduction reaction. The unique solvation and interfacial chemistry of FB-DHCE enable dendrite-free deposition of lithium with high Coulombic efficiency (up to 99.3%) and prolong cycling life (over 500 cycles at 1 mA cm−2). The performance of FB-DHCE is further demonstrated in full cells under practical conditions, including ambient to low temperature (–20 °C), high areal capacity (7.6 mAh cm−2), high current density (3 mA cm−2), limited excess Li (20 µm Li), and lean electrolyte (3 g Ah−1). Employing FB as a cosolvent not only opens a novel pathway to stabilize Li metal anodes, but also could greatly advance the development of Li metal batteries.  相似文献   

14.
The practical application of lithium metal anode has been hindered by safety and cyclability issues due to the uncontrollable dendrite growth, especially during fast cycling and deep plating/stripping process. Here, a composite Li metal anode supported by periodic, perpendicular, and lithiophilic TiO2/poly(vinyl pyrrolidone) (PVP) nanofibers via a facial rolling process is reported. TiO2/PVP nanofibers with good Li affinity provide low-tortuosity and directly inward Li+ transport paths to facilitate Li nucleation and deposition under high areal capacities and current densities. The micrometer-scale interspaces between TiO2/PVP walls offer enough space to circumvent the huge volume variation and avoid structure collapsing during the repeated deep Li plating/stripping. The unique structure enables stable cycling under ultrahigh currents (12 mA cm−2), and ultra-deep plating/stripping up to 60 mAh cm−2 with a long cycle life in commercial carbonate electrolytes. The gassing behavior in operating pouch cells is observed using ultrasonic transmission mapping. When paired with LiFePO4 (5 mAh cm−2), sulfur (3 mAh cm−2), and high-voltage LiNi0.8Co0.1Mn0.1O2 cathodes, the composite Li anodes deliver remarkably improved rate performance and cycling stability, demonstrating that it could be a promising strategy for balancing high-energy density and high-power density in Li metal batteries.  相似文献   

15.
For the development of all-solid-state lithium metal batteries (LMBs), a high-porous silica aerogel (SA)-reinforced single-Li+ conducting nanocomposite polymer electrolyte (NPE) is prepared via two-step selective functionalization. The mesoporous SA is introduced as a mechanical framework for NPE as well as a channel for fast lithium cation migration. Two types of monomers containing weak-binding imide anions and Li+ cations are synthesized and used to prepare NPEs, where these monomers are grafted in SA to produce SA-based NPEs (SANPEs) as ionomer-in-framework. This hybrid SANPE exhibits high ionic conductivities (≈10−3 S cm−1), high modulus (≈105 Pa), high lithium transference number (0.84), and wide electrochemical window (>4.8 V). The resultant SANPE in the lithium symmetric cell possesses long-term cyclic stability without short-circuiting over 800 h under 0.2 mA cm−2. Furthermore, the LiFePO4|SANPE|Li solid-state batteries present a high discharge capacity of 167 mAh g−1 at 0.1 C, good rate capability up to 1 C, wide operating temperatures (from −10 to 40 °C), and a stable cycling performance with 97% capacity retention and 100% coulombic efficiency after 75 cycles at 1 C and 25 °C. The SANPE demonstrates a new design principle for solid-state electrolytes, allowing for a perfect complex between inorganic silica and organic polymer, for high-energy-density LMBs.  相似文献   

16.
Solid electrolytes are the most promising substitutes for liquid electrolytes to construct high-safety and high-energy-density energy storage devices. Nevertheless, the poor lithium ion mobility and ionic conductivity at room temperature (RT) have seriously hindered their practical usage. Herein, single-layer layered-double-hydroxide nanosheets (SLN) reinforced poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite polymer electrolyte is designed, which delivers an exceptionally high ionic conductivity of 2.2 × 10−4 S cm−1 (25  ° C), superior Li+ transfer number ( ≈ 0.78) and wide electrochemical window ( ≈ 4.9 V) with a low SLN loading ( ≈ 1 wt%). The Li symmetric cells demonstrate ultra-long lifespan stable cycling over ≈ 900 h at 0.1 mA cm−2, RT. Moreover, the all-solid-state Li|LiFePO4 cells can run stably with a high capacity retention of 98.6% over 190 cycles at 0.1 C, RT. Moreover, using LiCoO2/LiNi0.8Co0.1Mn0.1O2, the all-solid-state lithium metal batteries also demonstrate excellent cycling at RT. Density functional theory calculations are performed to elucidate the working mechanism of SLN in the polymer matrix. This is the first report of all-solid-state lithium batteries working at RT with PVDF-HFP based solid electrolyte, providing a novel strategy and significant step toward cost-effective and scalable solid electrolytes for practical usage at RT.  相似文献   

17.
Lithium metal (LM) is a promising anode material for next generation lithium ion based electrochemical energy storage devices. Critical issues of unstable solid electrolyte interphases (SEIs) and dendrite growth however still impede its practical applications. Herein, a composite gel polymer electrolyte (GPE), formed through in situ polymerization of pentaerythritol tetraacrylate with fumed silica fillers, is developed to achieve high performance lithium metal batteries (LMBs). As evidenced theoretically and experimentally, the presence of SiO2 not only accelerates Li+ transport but also regulates Li+ solvation sheath structures, thus facilitating fast kinetics and formation of stable LiF-rich interphase and achieving uniform Li depositions to suppress Li dendrite growth. The composite GPE-based Li||Cu half-cells and Li||Li symmetrical cells display high Coulombic efficiency (CE) of 90.3% after 450 cycles and maintain stability over 960 h at 3 mA cm−2 and 3 mAh cm−2, respectively. In addition, Li||LiFePO4 full-cells with a LM anode of limited Li supply of 4 mAh cm−2 achieve capacity retention of 68.5% after 700 cycles at 0.5 C (1 C = 170 mA g−1). Especially, when further applied in anode-free LMBs, the carbon cloth||LiFePO4 full-cell exhibits excellent cycling stability with an average CE of 99.94% and capacity retention of 90.3% at the 160th cycle at 0.5 C.  相似文献   

18.
Quasi-solid-state lithium metal batteries are deemed as one of the most promising next-generation energy storage devices due to their enhanced safety and high energy density. However, the Li/Gel polymer Electrolyte (GPE) interface deterioration induced by the side reactions, dendrite growth during Li plating, and contact loss during Li stripping will inevitably lead to the failure of the battery. Herein, a Li/Li23Sr6–Li3N/Sr2N anode structure (LSN) prepared by hot-rolling process is designed, where Sr2N serves as an inert skeleton to retain the interfacial coupling and to avoid contact loss. At the same time, the Li3N–Li23Sr6 interphase with high Li adsorption energy and fast Li+ transfer kinetics regulate the Li plating behavior. Benefitting from the design, when coupled with the carbonate-based GPE, the lifespan of the symmetric battery with the LSN is extended to 1300 h at 0.2 mA cm−2/0.2 mAh cm−2. Furthermore, the LSN||LiFePO4 (LFP) full cell exhibits a steady cycle with extremely low voltage polarization at 0.5 C after 200 cycles. This study provides a practical strategy to stabilize the Li/GPE interface and deepens the understanding of Li+ plating/stripping behaviors through the interphase.  相似文献   

19.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

20.
Metal-organic frameworks (MOFs) have been proposed as novel fillers for constructing polymer solid electrolytes based composite electrolytes. However, MOFs are generally used as passive fillers, in-depth revealing the binding mode between MOFs and polyethylene oxide (PEO), the critical role of MOFs in facilitating Li+ transport in solid electrolytes is full of challenges. Herein, inspired by density functional theory (DFT) the 2D-MOF with rich unsaturated metal coordination sites that can bind the O atom in PEO through the metal–oxygen bond,  anchor TFSI to release Li+, resulting in a remarkable Li+ transference number of 0.58, is reported according well with the experimental results and molecular dynamics (MD) simulation. Impressively, after the introduction of the 2D-MOF, the Li+ can rapidly hop along the benzene ring center within the 2D-MOF plane, and the interface between the benzene ring and PEO can also serve as a fast Li+ migration pathway, delivering multiple ion-transport channels, which present a high ion conductivity of 4.6 × 10−5 S cm−1 (25 °C). The lithium symmetric battery is stable for 1300 h at 60 °C, 0.1 mA cm−2. The assembled lithium metal solid state battery maintains high capacity of 162.8 mAh g−1 after 500 cycles at 60 °C and 0.5 C. This multiple ion-transport channels approach brings new ideas for designing advanced solid electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号