首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We successfully designed and synthesized a series of BDT-Qx-T based polymers as the donor polymer used in all polymer solar cells (all-PSCs). Their properties were finely tuned by side-chain modification and the introduction of electron-withdrawing fluorine atoms to polymer acceptor unit. Then we systematically investigated the effect of molecular structure on the polymer morphology and photovoltaic properties in all-PSCs. We revealed that the fluorination can optimize polymer energy level and improve the polymer coplanarity, leading to enhanced intermolecular packing and balanced carrier transport. Meanwhile, the substitution of dodecyl for 2-ethylhexyl side chains can result in improved film morphology and hole transport. As a result of the synergistic effect between fluorination and side-chain modification, we achieved a high PCE of 5.35% for the optimized all-PSCs. More importantly, our approach may become a general and effective way to tailor the polymer molecular structure for achieving high performance all-PSCs.  相似文献   

2.
Developing organic solar cells (OSCs) based on a ternary active layer is one of the most effective approaches to maximize light harvesting and improve their photovoltaic performance. However, this strategy meets very limited success in all-polymer solar cells (all-PSCs) due to the scarcity of narrow bandgap polymer acceptors and the challenge of morphology optimization. In fact, the power conversion efficiencies (PCEs) of ternary all-PSCs even lag behind binary all-PSCs. Herein, highly efficient ternary all-PSCs are realized based on an ultranarrow bandgap (ultra-NBG) polymer acceptor DCNBT-TPC, a medium bandgap polymer donor PTB7-Th, and a wide bandgap polymer donor PBDB-T. The optimized ternary all-PSCs yield an excellent PCE of 12.1% with a remarkable short-circuit current density of 21.9 mA cm−2. In fact, this PCE is the highest value reported for ternary all-PSCs and is much higher than those of the corresponding binary all-PSCs. Moreover, the optimized ternary all-PSCs show a photostability with ≈ 68% of the initial PCE retained after 400 h illumination, which is more stable than the binary all-PSCs. This work demonstrates that the utilization of a ternary all-polymer system based on ultra-NBG polymer acceptor blended with compatible polymer donors is an effective strategy to advance the field of all-PSCs.  相似文献   

3.
The weak donor-strong acceptor polymer acceptors for all-polymer solar cells (all-PSCs) have gained much less attention compared with the typical donor-strong acceptor counterparts. Direct (hetero)arylation polymerization reaction is a rising synthetic method, although most of the naphthalene diimide polymer photovoltaic acceptors have been prepared by classic Stille polymerization. A weak donor-strong acceptor polymer acceptor PNB2F has been successfully designed and synthesized by the two-step direct (hetero)arylation reaction and further applied in all-PSCs. The all-PSC device based on PNB2F and electron-donating polymer PBDB-T gained a PCE of 4.49%. The results demonstrate that direct (hetero)arylation reaction is a promising tool for building efficient polymer acceptors with convenient and low-cost synthesis ideas.  相似文献   

4.
A series of conjugated polymers using naphtho[1,2‐c:5,6‐c]bis[1,2,5]thiadiazole and benzodithiophene alternating backbone is synthesized to investigate the effect of side chain substitution on conjugated donor–acceptor polymer on electronic, morphological, and photovoltaic properties. It is found that light absorption and frontier energy levels of the resultant polymers are strongly affected by the side chains. The thin film morphology, crystal structure, crystallinity, and orientation also depend on the side chains; the side chain type affects more in the π–π stacking direction, while the side chain density plays a significant role in the lamellar packing direction. The thickness of the active layer also influences the performance of the solar cells with some materials showing enhanced performance with thicker active layers. The best solar cell device in this study has power conversion efficiencies of 8.14%, among the highest in materials of similar structure.  相似文献   

5.
Miscibility and morphology of the active layers have significant influence on the photovoltaic performance of polymer solar cells (PSCs). Chemical strategies, especially molecular structure design, have been proven to be crucial for polymer donor materials. In this work, two wide bandgap D-A copolymer donors composed of tripropylsilyl substituted bithienyl-benzodithiophene as donor (D) unit and dialkyl substituted bithiazole as acceptor (A) unit were designed and synthesized. By introducing thiophene π-bridges into the backbone, the miscibility and morphological properties of the materials are effectively tuned, leading to tremendous progress in power conversion efficiency from 0.95% to 10.73% with m-ITIC as the acceptor. The results demonstrate that manipulating molecular distortion can be an effective strategy to regulate molecular self-assembly behavior of the polymer donors and achieve excellent aggregation properties, blend miscibility, and photovoltaic performance of the PSCs.  相似文献   

6.
All‐conjugated block copolymers bring together hole‐ and electron‐conductive polymers and can be used as the active layer of solution‐processed photovoltaic devices, but it remains unclear how molecular structure, morphology, and electronic properties influence performance. Here, the role of the chemical linker is investigated through analysis of two donor–linker–acceptor block copolymers that differ in the chemistry of the linking group. Device studies show that power conversion efficiencies differ by a factor of 40 between the two polymers, and ultrafast transient absorption measurements reveal charge separation only in block copolymers that contain a wide bandgap monomer at the donor–acceptor interface. Optical measurements reveal the formation of a low‐energy excited state when donor and acceptor blocks are directly linked without this wide bandgap monomer. For both samples studied, it is found that the rate of charge recombination in these systems is faster than in poly­mer–polymer and polymer–fullerene blends. This work demonstrates that the linking group chemistry influences charge separation in all‐conjugated block copolymer systems, and further improvement of photovoltaic performance may be possible through optimization of the linking group. These results also suggest that all‐conjugated block copolymers can be used as model systems for the donor–acceptor interface in bulk heterojunction blends.  相似文献   

7.
Two non-fullerene acceptors, PNDIT-20 and PNDIT-16, based on naphthalenediimide (NDI) and thiophene comonomers, have been synthesized for all polymer solar cells (all-PSCs) application. The incorporation of long alkyl chains onto the NDI units endows the polymers with excellent solubility in both halogen and non-halogen solvents. Halogen-free solvents, e.g. 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), and 1,2-dimethylbenzene (1,2-DMB), have been employed to fabricate all-PSCs based on PNDIT-20 or PNDIT-16 paired with a donor polymer PTB7-Th without use of additives or post-treatment. The devices using 1,2-DMB as the solvent demonstrated PCEs of 3.88% and 4.94% for PNDIT-20 and PNDIT-16, respectively, which are among the highest values reported for PNDIT-based all-PSCs produced using environmentally friendly solvent. The performance is superior than the control device fabricated from conventional but hazardous 1,2-dichlorobenzene (1,2-DCB). Space-charge-limited current (SCLC) measurements and active layer morphological investigation revealed that non-halogenated solvent processed devices show higher and more balanced hole and electron mobilities as well as favorable surface morphology for charge transfer. The results reported in this work suggest that non-halogenated solvents for all-PSCs processing are greatly promising for the development of high performance all-PSCs.  相似文献   

8.
In this work, we reported efficient polymer solar cells with balanced hole/electron mobilities tuned by the acceptor content in bulk heterojunction blend films. The photovoltaic cells were fabricated with two new wide band-gap D-A polymers PBDDIDT and PBDDIDTT as the donor material. The molecular conformations of new polymers are carefully evaluated by theoretical calculations. The results of photovoltaic studies show that two devices reach their optimal conditions with rich PC71BM content up to 80% in blend films, which is uncommon with most of reported PSCs. The as-cast devices based on PBDDIDT and PBDDIDTT reveal good photovoltaic performance with PCE of 7.04% and 6.40%, respectively. The influence of PC71BM content on photovoltaic properties is further detailed studied by photoluminescence emission spectra, charge mobilities and heterojunction morphology. The results exhibit that more efficient charge transport between donor and acceptor occurs in rich PC71BM blend films. Meanwhile, the hole and electron mobilities are simultaneously enhanced and afford a good balance in rich PC71BM blend films (D/A, 1:4) which is critical for the improvement of current density and fill factors.  相似文献   

9.
Recent developments in conjugated‐polymer‐based photovoltaic elements are reviewed. The photophysics of such photoactive devices is based on the photo‐induced charge transfer from donor‐type semiconducting conjugated polymers to acceptor‐type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C60. This photo‐induced charge transfer is reversible, ultrafast (within 100 fs) with a quantum efficiency approaching unity, and the charge‐separated state is metastable (up to milliseconds at 80 K). Being similar to the first steps in natural photosynthesis, this photo‐induced electron transfer leads to a number of potentially interesting applications, which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are presented and their potential in terrestrial solar energy conversion discussed. Recent progress in the realization of improved photovoltaic elements with 3 % power conversion efficiency is reported.  相似文献   

10.
Layer-by-layer all-polymer solar cells (LbL all-PSCs) are prepared with PM6 and PY-IT by using sequential spin coating method. The exciton dissociation efficiency in acceptor layer near electrode is rather low due to the limited exciton diffuse distance and impossible energy transfer from narrow bandgap acceptor to wide bandgap donor. In this study, less PM6 is incorporated into PY-IT layer to enhance exciton dissociation in PY-IT layer near electrode. A power conversion efficiency (PCE) of 17.45% is achieved in the LbL all-PSCs incorporating 10 wt% PM6 into PY-IT layer, which is much larger than 16.04% PCE of PM6/PY-IT-based LbL all-PSCs. Over 8% PCE enhancement can be realized by incorporating 10 wt% PM6 into PY-IT layer, which is attributed to the enhanced exciton utilization efficiency in PY-IT layers near electrode. The enhanced exciton utilization efficiency in PY-IT layer can be confirmed from the quenched photoluminescence (PL) emission in PY-IT:PM6 films. Meanwhile, charge transport in acceptor layers can be optimized by incorporating less PM6, as confirmed from the optimized molecular arrangement. This study indicates that the strategy of incorporating less donor into acceptor layer has great potential in fabricating efficient LbL all-PSCs by improving exciton utilization efficiency in acceptor layer near electrode.  相似文献   

11.
In this work, an efficiency of 15.17% in the PBDB-T/PYT all-PSCs fabricated by a layer-by-layer (LbL) deposition technique is achieved by synergistically controlling additive dosages, which is not only higher than that (14.06%) of the corresponding bulk heterojunction (BHJ) device, but also the top efficient for all-PSCs. Through the studies of physical dynamics and morphological characteristics, it is found that the LbL film can effectively improve optical and electronic properties, ensure exciton separation, charge generation and extraction, reduce trap-assisted recombination, and facilitate hole transfer in LbL blends, thus achieving higher performance compared to its BHJ counterpart. Notably, the synergistic regulation of additive dosages in donor and acceptor solutions is also confirmed in the other three photovoltaic systems. Of particular note is that over 15% device performance is also achieved in the PBDB-T/PYT LbL all-PSCs fabricated via a blade-coating technique, further demonstrating the great significance of this synergistic additive-doping strategy for the printing fabrication of organic photovoltaics.  相似文献   

12.
Two new 2D-conjugated D-A copolymers, PBDTT-S-DPP and PBDTSe-S-DPP, based on benzodithiophene (BDT) donor unit with alkylthio-thiophene or alkylthio-selenophene conjugated side chains and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP) acceptor unit, were synthesized for the application as donor materials in polymer solar cells (PSCs). The two polymers were characterized by absorption spectroscopy, cyclic voltammetry, thermogravimetric analysis, theoretical calculation with density functional theory, X-ray diffraction and photovoltaic measurements. The results show that the alkylthio-thiophene/selenophene side groups on BDT unit and intramolecular hydrogen bonding interaction in DPP acceptor unit play important roles in affecting the absorption, HOMO energy levels, molecular planarity and the crystallinity of the polymers. The PSCs based on PBDTT-S-DPP or PBDTSe-S-DPP as donor and PC71BM as acceptor demonstrate power conversion efficiency (PCE) of 5.62% and 5.01%, with relatively higher Voc of 0.79 V and 0.76 V, respectively.  相似文献   

13.
Solution-processed organic bulk-heterojunction (BHJ) photovoltaic cells using random copolymeric donor materials have been extensively reported due to their suitable film-forming characteristics and phase-separated nano-morphology. Here, ratio-controlled toluene-versus benzene-chemical group based diketopyrrolopyrrole (DPP) donor polymers mixed with a fullerene acceptor were investigated to fabricate an efficient photovoltaic active layer with improved electrical properties through a vacuum treatment. The vacuum process leads to an increase in the phase-separation with a low surface roughness and nanoscale-distributed crystallinity due to securing the dry time of the residual solvent and solvent additive within the active layer. Moreover, the optimized DPP-based donor with toluene (T) versus benzene (B) linkers and electron transporting layer leads to an improvement in the power conversion efficiencies of up to 6.31% under AM 1.5G illumination due to the contributions of an efficient charge transfer and reduced series resistance. Therefore, the organic semiconductor obtained with the ratio-controlled molecular structure and proper solvent drying process plays an important role in increasing the electrical and morphological properties to produce efficient organic solar cells.  相似文献   

14.
This paper is concerned with the photophysics of triplet excitons in conjugated donor polymers, and their quenching by molecular oxygen. These photophysics are assayed by transient absorption spectroscopy, and correlated with X‐ray diffraction measurements of relative material crystallinity. Eleven different donor polymers are considered, including representatives from several classes of donor polymers recently developed for organic solar cell applications. Triplet lifetimes in an inert (nitrogen) environment range from <100 ns to 5 μs. A remarkably quantitative correlation is observed between these triplet lifetimes and polymer XRD strength, with more crystalline polymers exhibiting shorter triplet lifetimes. Given the broad range of polymers considered, this correlation indicates that material crystallinity is the dominant factor determining triplet lifetime for the polymers studied herein. The rate constant for oxygen quenching of these triplet states, determined from a comparison of transient absorption data under inert and oxygen environments, also show a correlation with material crystallinity. Overall these dependencies result in the yield of oxygen quenching of polymer triplet states increasing strongly as the crystallinity of the polymer is reduced. These photophysical data are compared with photochemical stability of these donor polymers, assayed by photobleaching studies of polymer films under continuous light exposure in an oxygen environment. A partial correlation is observed, with the most stable polymers being the most crystalline, exhibiting negligible oxygen quenching yields. These results are discussed in terms of the likely origins of the correlations between material crystallinity and photophysics, and in terms of their implications for the environmental stability of such donor polymers in optoelectronic devices.  相似文献   

15.
New polymers with high electron mobilities have spurred research in organic solar cells using polymeric rather than fullerene acceptors due to their potential of increased diversity, stability, and scalability. However, all‐polymer solar cells have struggled to keep up with the steadily increasing power conversion efficiency of polymer:fullerene cells. The lack of knowledge about the dominant recombination process as well as the missing concluding picture on the role of the semi‐crystalline microstructure of conjugated polymers in the free charge carrier generation process impede a systematic optimization of all‐polymer solar cells. These issues are examined by combining structural and photo‐physical characterization on a series of poly(3‐hexylthiophene) (donor) and P(NDI2OD‐T2) (acceptor) blend devices. These experiments reveal that geminate recombination is the major loss channel for photo‐excited charge carriers. Advanced X‐ray and electron‐based studies reveal the effect of chloronaphthalene co‐solvent in reducing domain size, altering domain purity, and reorienting the acceptor polymer crystals to be coincident with those of the donor. This reorientation correlates well with the increased photocurrent from these devices. Thus, efficient split‐up of geminate pairs at polymer/polymer interfaces may necessitate correlated donor/acceptor crystal orientation, which represents an additional requirement compared to the isotropic fullerene acceptors.  相似文献   

16.
By the introduction of different building blocks and side‐chains, a series of donor–acceptor type polymer acceptors containing naphthalene diimide have been successfully prepared. The theoretical and experimental results show that the molecular design effectively tunes the energy levels, solubility, and coplanarity of the acceptor polymers. The intermolecular packing, which has been considered as a key factor in the bulk heterojunction morphology, has been adjusted by changing the coplanarity. As a result of improved morphology and fine‐tuned energy levels, a power conversion efficiency of 6.0% has been demonstrated for the optimized devices, which is among the highest‐efficiencies for reported all‐polymer solar cells. The improved device performance may be attributed to the resemble crystallinity of the donor/acceptor polymers, which can lead to the optimal phase separation morphology balancing both charge transfer and transport.  相似文献   

17.
Photoinduced charge separation in bulk heterojunction solar cells is studied using a series of thiazolo‐thiazole donor polymers that differ in their side groups (and bridging atoms) blended with two acceptor fullerenes, phenyl‐C71‐butyric acid methyl ester (PC71BM) and a fullerene indene‐C60 bisadduct (ICBA). Transient absorption spectroscopy is used to determine the yields and lifetimes of photogenerated charge carriers, complimented by cyclic voltammetry studies of materials energetics, wide angle X‐ray diffraction and transmission electron microscopy studies of neat and blend film crystallinity and photoluminescence quenching studies of polymer/fullerene phase segregation, and the correlation of these measurements with device photocurrents. Good correlation between the initial polaron yield and the energetic driving force driving charge separation, ΔECS is observed. All blend films exhibit a power law transient absorption decay phase assigned to non‐geminate recombination of dissociated charges; the amplitude of this power law decay phase shows excellent correlation with photocurrent density in the devices. Furthermore, for films of one (relatively amorphous) donor polymer blended with ICBA, we observe an additional 100 ns geminate recombination phase. The implications of the observations reported are discussed in terms of the role of materials' crystallinity in influencing charge dissociation in such devices, and thus materials design requirements for efficient solar cell function.  相似文献   

18.
Monitoring the ammonia gas is of great interest to both environmental benefits and human health. The recent advance in polymer thin film transistors (TFTs) can realize high sensitivity and low‐cost gas sensors. Ammonia gas interacts with charge carrier channels and polymer/dielectrics interface through Coulomb force. This is the first report of high sensitivity and reusable ammonia sensor fabricated from thiophene‐isoindigo donor–acceptor conducting polymer. This kind of polymer has advantages of simple synthesis and excellent air stability. The systematic study is carried out to investigate relationship among chemical structure variation and morphology control of polymer to the performance of ammonia sensor. High crystallinity, favored crystal orientation, and direct percolation routes for analytes are found to be essential to increase the susceptibility of polymers to ammonia gas. By strengthening edge‐on morphology, the sensitivity can be enhanced fivefold for the same polymer. The idea can put forward the development of sensor array in a time‐efficient manner by employing the morphology effect.  相似文献   

19.
π‐conjugated polymers based on the electron‐neutral alkoxy‐functionalized thienyl‐vinylene (TVTOEt) building‐block co‐polymerized, with either BDT (benzodithiophene) or T2 (dithiophene) donor blocks, or NDI (naphthalenediimide) as an acceptor block, are synthesized and characterized. The effect of BDT and NDI substituents (alkyl vs alkoxy or linear vs branched) on the polymer performance in organic thin film transistors (OTFTs) and all‐polymer organic photovoltaic (OPV) cells is reported. Co‐monomer selection and backbone functionalization substantially modifies the polymer MO energies, thin film morphology, and charge transport properties, as indicated by electrochemistry, optical spectroscopy, X‐ray diffraction, AFM, DFT calculations, and TFT response. When polymer P7 is used as an OPV acceptor with PTB7 as a donor, the corresponding blend yields TFTs with ambipolar mobilities of μe = 5.1 × 10?3 cm2 V–1 s–1 and μh = 3.9 × 10?3 cm2 V–1 s–1 in ambient, among the highest mobilities reported to date for all‐polymer bulk heterojunction TFTs, and all‐polymer solar cells with a power conversion efficiency (PCE) of 1.70%, the highest reported PCE to date for an NDI‐polymer acceptor system. The stable transport characteristics in ambient and promising solar cell performance make NDI‐type materials promising acceptors for all‐polymer solar cell applications.  相似文献   

20.
The problem of batch‐to‐batch variation of electronic properties and purity of conjugated polymers used as electron donor and photon harvesting materials in organic solar cells is addressed. A simple method is developed for rapid analysis of electronic quality of polymer‐based materials. It is shown that appearance of impurities capable of charge trapping changes electrophysical properties of conjugated polymers. In particular, a clear correlation between the effective relaxation time τeff and relative photovoltaic performance (η/ηmax) is revealed for samples of poly(3‐hexylthiophene) intentionally polluted with a palladium catalyst. This dependence is also valid for all other investigated samples of conjugated polymers. Therefore, fast impedance measurements at three different frequencies allow one to draw conclusions about the purity of the analyzed polymer sample and even estimate its photovoltaic performance. The developed method might find extensive applications as a simple tool for product quality control in the laboratory and industrial‐scale production of conjugated polymers for electronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号