首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
Green and amplified spontaneous emissions with low thresholds are crucial for the development of solution-processable perovskite light sources. Although mixed-cation CsPbBr3 perovskites are highly promising, pinholes are inevitably formed during the spin-coating process, which results in considerable optical losses. This study proposes a solvent recrystallization strategy to reduce the number of pinholes and enhance the crystallinity of (Cs, FA, MA)PbBr3/NMA (FA = CH(NH2)2, MA = CH3NH3, and NMA = C11H9NH3) films in a dimethyl sulfoxide gas environment. Amplified spontaneous green emissions are produced with a low threshold of 1.44 μJ cm−2 and a high net modal gain of 1176 cm−1. The reduced threshold is attributed to the relatively low propagation loss and suppressed Auger recombination, which results from the formation of a pinhole-free surface and enlarged grain size. These results can be utilized in the development of high-performance perovskite laser devices.  相似文献   

2.
Films of the quasi-2D perovskite based on 1-naphthylmethylamine (NMA) are promising as the gain medium for optically pumped lasing and future electrically pumped lasing because of its low lasing threshold and small electroluminescence efficiency rolloff. However, reasons for the low threshold and small efficiency rolloff are still unclear. Therefore, exciton dynamics are investigated in NMA-based quasi-2D perovskite films. It is found that quenching of bright excitons by other excitons or charge carriers is unlikely in NMA-based quasi-2D perovskite films, which is one reason for the low lasing threshold and small efficiency rolloff. Moreover, thermally stimulated current measurements reveal that the defect levels inside the band gap of the NMA-based quasi-2D perovskite are shallow, with a depth of ≈0.3 eV, causing a decrease in nonradiative exciton recombination through the defects. Therefore, population inversion can be easily achieved, leading to the low lasing threshold as well. For fabrication of NMA-based quasi-2D perovskite laser devices with even lower lasing thresholds, a circular-shaped optical resonator, and small-molecule-based defect passivation are used. Optically pumped lasing can be obtained from these devices, with a threshold of ≈1 µJ cm−2, which is one of the lowest values ever reported in any perovskite lasers.  相似文献   

3.
3D organic-inorganic metal halide perovskites are excellent materials for optoelectronic applications due to their exceptional properties, solution processability, and cost-effectiveness. However, the lack of environmental stability highly restricts them from practical applications. Herein, a stable centimeter-long 2D hybrid perovskite (N-MPDA)[PbBr4] single crystal using divalent N1-methylpropane-1,3-diammonium (N-MPDA) cation as an organic spacer, is reported. The as-grown single crystal exhibits stable optoelectronic performance, low threshold random lasing, and multi-photon luminescence/multi-harmonic generation. A photoconductive device fabricated using (N-MPDA)[PbBr4] single crystal exhibits an excellent photoresponsivity (≈124 AW−1 at 405 nm) that is ≈4 orders of magnitudes higher than that of monovalent organic spacer-assisted 2D perovskites, such as (BA)2PbBr4 and (PEA)2PbBr4, and large specific detectivity (≈1012 Jones). As an optical gain media, the (N-MPDA)[PbBr4] single crystal exhibits a low threshold random lasing (≈6.5 µJ cm−2) with angular dependent narrow linewidth (≈0.1 nm) and high-quality factor (Q ≈ 2673). Based on these results, the outstanding optoelectronic merits of (N-MPDA)[PbBr4] single crystal will offer a high-performance device and act as a dynamic material to construct stable future electronics and optoelectronic-based applications.  相似文献   

4.
Energy conversion and storage devices are highly desirable for the sustainable development of human society. Hybrid organic–inorganic perovskites have shown great potential in energy conversion devices including solar cells and photodetectors. However, its potential in energy storage has seldom been explored. Here the crystal structure and electrical properties of the 2D hybrid perovskite (benzylammonium)2PbBr4 (PVK-Br) are investigated, and the consecutive ferroelectric-I (FE1) to ferroelectric-II (FE2) then to antiferroelectric (AFE) transitions that are driven by the orderly alignment of benzylamine and the distortion of [PbBr6] octahedra are found. Furthermore, accompanied by field-induced AFE to FE transition near room temperature, a large energy storage density of ≈1.7 J cm−3 and a wide working temperature span of ≈70 K are obtained; both of which are among the best in hybrid AFEs. This good energy storage performance is attributed to the large polarization of ≈7.6 µC cm−2 and the high maximum electric field of over 1000 kV cm−1, which, as revealed by theoretical calculations, originate from the cooperative coupling between the [PbBr6] octahedral framework and the benzylamine molecules. The research clarifies the discrepancy in the phase transition character of PVK-Br and shed light on developing high-performance energy storage devices based on 2D hybrid perovskite.  相似文献   

5.
Quasi-2D perovskites have shown great potential in achieving solution-processed electrically pumped laser diodes due to their multiple-quantum-well structure, which induces a carrier cascade process that can significantly enhance population inversion. However, continuous-wave (CW) optically pumped lasing has yet to be achieved with near-infrared (NIR) quasi-2D perovskites due to the challenges in obtaining high-quality quasi-2D films with suitable phase distribution and morphology. This study regulates the crystallization of a NIR quasi-2D perovskite ((NMA)2FAn−1PbnI3n+1) using an 18-crown-6 additive, resulting in a compact and smooth film with a largely improved carrier cascade efficiency. The amplified spontaneous emission threshold of the film is reduced from 47.2 to 35.9 µJ cm−2. Furthermore, by combining the film with a high-quality distributed feedback grating, this study successfully realizes a CW NIR laser of 809 nm at 110 K, with a high Q-factor of 4794 and a low threshold of 911.6 W cm−2. These findings provide an important foundation for achieving electrically pumped laser diodes based on the unique quasi-2D perovskites.  相似文献   

6.
CsPbBr3 is a promising type of light‐emitting halide perovskite with inorganic composition and desirable thermal stability. The luminescence efficiency of pristine CsPbBr3 thin films, however, appears to be limited. In this work, light emitting diodes based on CsPbBr3|Cs4PbBr6 composites are demonstrated. Both quantum efficiency and emission brightness are improved significantly compared with similar devices constructed using pure CsPbBr3. The high brightness can be attributed to the enhanced radiative recombination from CsPbBr3 crystallites confined in the Cs4PbBr6 host matrix. The unfavorable charge transport property of Cs4PbBr6 can be circumvented by optimizing the ratio between the host and the guest components and the total thickness of the composite thin films. The inorganic composition of the emitting layer also leads to improved device stability under the condition of continuous operation.  相似文献   

7.
A family of trigonal starburst conjugated molecules (TrFPy, TrFPy, and TrF2Py) composed of a truxene core and pyrene cappers with various bridge lengths is synthesized and characterized. The incorporation of pyrene cappers successfully depress the crystallization tendency, resulting in enhanced glassy temperature and improved morphological stability of the thin films. The high photoluminescence yield in neat films and excellent thermal stability render these pyrene‐capped starbursts promising lasing optical gain media. Low amplified spontaneous emission (ASE) thresholds (EthASE) of 180 nJ pulse‐1 and 101 nJ pulse–1 were recorded for TrFPy and TrF2Py, respectively. One dimensional distributed feedback (1D DFB) lasers demonstrated lasing threshold of 9.3 kW/cm2 and 7.3 kW/cm2 for TrFPy (at 457 nm) and TrF2Py lasers (at 451 nm), respectively. The ASE performance of TrFPy and TrF2Py in an ambient condition was recorded with various annealing temperature (from 80 to 250 °C, 10 min). Surprisingly, TrFPy exhibited excellent ASE stability in an ambient condition, which is still detectable even after annealing at 250 °C for 10 min. The results suggest the pyrene‐capped molecular design strategy is positive on improving the optical gain stability and meanwhile maintaining excellent lasing properties.  相似文献   

8.
A distinct advantage of halide perovskite semiconductors is their potential as gain media in high-performance, all-solution-processed flexible lasers. However, most perovskite microlasers employ external optical resonators with rigid and high-temperature/vaccum-processed structures unsuitable for flexible applications. Here, low-threshold, external-cavity-free perovskite lasers (≈550 nm, linewidth: ≈0.3 nm, quality factor: ≈1900, room temperature), prepared with excellent reproducibility using simple one-step spin-coating and low-temperature annealing, are demonstrated. Exceptionally low lasing thresholds of 9.3 and 14.6 µJ cm−2 are achieved for external-cavity-free perovskite lasers on rigid and flexible substrates, respectively. The thresholds and quality factors are on par with that of high-performance perovskite microlasers with well-designed external cavities. The lasers exhibit good operational stability, showing half-life of >1.8 × 108 pulses under optical pumping in air. Transient optical experiments reveal that the low thresholds stem from enhanced band-to-band spontaneous and stimulated emission processes in the high-quality microcrystalline perovskite, effectively out-pacing trap-mediated and Auger processes detrimental to the lasing action. The flexible perovskite lasers retain >95% of the initial intensity after 10000 bending cycles, showing outstanding mechanical durability. As these lasers can be produced from solution within minutes at low costs, the findings are expected to enable high-throughput, scalable fabrication of perovskite lasers for emerging applications.  相似文献   

9.
An HBr‐assisted slow cooling method is developed for the growth of centimeter‐sized Cs4PbBr6 crystals. The obtained crystals show strong green photoluminescence with absolute photoluminescence quantum yields up to 97%. More importantly, the evolution process and structural characterizations support that the nonstoichiometry of initial Cs4PbBr6 crystals induce the formation of nanosized CsPbBr3 nanocrystals in crystalline Cs4PbBr6 matrices. Furthermore, high efficiency and wide color gamut prototype white light‐emitting diode devices are also demonstrated by combining the highly luminescent Cs4PbBr6 crystals as green emitters and commercial K2SiF6:Mn4+ phosphor as red emitters with blue emitting GaN chips. The optimized devices generate high‐quality white light with luminous efficiency of ≈151 lm W−1 and color gamut of 90.6% Rec. 2020 at 20 mA, which is much better than that based on conventional perovskite nanocrystals. The combination of improved efficiency and better stability with comparable color quality provides an alternative choice for liquid crystal display backlights.  相似文献   

10.
This study demonstrates the formation of extremely smooth and uniform formamidinium lead bromide (CH(NH2)2PbBr3 = FAPbBr3) films using an optimum mixture of dimethyl sulfoxide and N,N‐dimethylformamide solvents. Surface morphology and phase purity of the FAPbBr3 films are thoroughly examined by field emission scanning electron microscopy and powder X‐ray diffraction, respectively. To unravel the photophysical properties of these films, systematic investigation based on time‐integrated and time‐dependent photoluminescence studies are carried out which, respectively, bring out relatively lower nonradiative recombination rates and long lasting photogenerated charge carriers in FAPbBr3 perovskite films. The devices based on FTO/TiO2/FAPbBr3/spiro‐OMeTAD/Au show highly reproducible open‐circuit voltage (Voc) of 1.42 V, a record for FAPbBr3‐based perovskite solar cells. Voc as a function of illumination intensity indicates that the contacts are very selective and higher Voc values are expected to be achieved when the quality of the FAPbBr3 film is further improved. Overall, the devices based on these films reveal appreciable power conversion efficiency of 7% under standard illumination conditions with negligible hysteresis. Finally, the amplified spontaneous emission (ASE) behavior explored in a cavity‐free configuration for FAPbBr3 perovskite films shows a sharp ASE threshold at a fluence of 190 μJ cm?2 with high quantum efficiency further confirming the high quality of the films.  相似文献   

11.
Mixing cations in the perovskite structure has been shown to improve optoelectronic device performance and stability. In particular, CsxMA1-xPbBr3 (MA = CH3NH3) has been used to build high-efficiency light-emitting diodes. Despite those advantages, little is known about the exact location of the cations in the mixed perovskite film, and how cation distribution affects device properties and stability. By using scanning tunneling microscopy , the exact atomic structure of the mixed cation CsxMA1-xPbBr3 perovskite interface is revealed. In addition, X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are used to study the stability and electronic properties of the CsxMA1-xPbBr3 perovskite film. Partial substitution of MA+ by Cs+ induces a modification of the perovskite surface structure, leading to improved device stability is shown. These results provide a better understanding of the key parameters involved in the stability of mixed cation perovskite solar cells.  相似文献   

12.
High color purity is one of the important features for single-crystal metal halide perovskite light-emitting diode (LED). Despite single-crystal perovskite showing low bulk defect concentration, single-crystal perovskite LEDs do not exhibit high color purity advantage due to the absence of effective surface defect passivation. Herein, one fully wrapped structure is proposed to passivate the surface of the free-standing CsPbBr3 single-crystal films. The surface of CsPbBr3 single-crystal films is wrapped by ultra-thin polymethyl methacrylate, precisely controlling the thickness. The single-crystal perovskite film device can achieve high color purity with a full width at half maximum (FWHM) of 15.8 nm) and a large luminescent area of 2.25 mm2. It is observed that surface passivation is due to interaction of CO bond in polymer chains with the Lewis acid PbBr2. The passivated perovskite single-crystal films significantly improve carrier lifetime and suppress surface defects. It is noteworthy that the passivated free-standing single-crystal perovskite films are feasible to build up a vertical LED device structure, avoiding the edge glowing and short-circuiting of the LED device. This study demonstrates the large luminescent area of the high-quality millimetre-scale free-standing single-crystal films for wide color gamut display and vertical optoelectronic devices.  相似文献   

13.
We have designed and investigated electrical and optical properties of solution-processed organic field-effect transistors (OFETs) based on conjugated polymer PFO and perovskite –cesium lead halide nanocrystals (CsPbI3) composite films. It was shown that OFETs based on PFO:CsPbI3 films exhibit current-voltage (I-V) characteristics of OFETs with dominant hole transport and saturation current behavior at temperatures 200–300 K. It was found that PFO:CsPbI3 OFETs have a negligible hysteresis of output and transfer characteristics especially at temperatures below 250 K. The values of the hole mobility estimated from I-Vs of PFO:CsPbI3 OFETs were found to be ∼2.4 10−1 cm2/Vs and ∼1.9 10−1 cm2/Vs in saturation and low fields regimes respectively at 300 K; the hole mobility dropped down to ∼6 10−3 cm2/Vs and 2.8 10−3 cm2/Vs respectively at 200 K, and then down to 5.5 10−5 cm2/Vs at 100 K (in low field regime), which is characteristic of hopping conduction. The effect of sensitivity to light and light-emitting effect were found under application of negative source-drain and gate pulse voltages to PFO:CsPbI3 OFETs at 300 K. The mechanism of charge carrier transport in OFETs based on PFO:CsPbI3 hybrid films is discussed.  相似文献   

14.
Lead halide perovskites exhibit extraordinary optoelectronic performances and are being considered as a promising medium for high-quality photonic devices such as single-mode lasers. However, for perovskite-based single-mode lasers to become practical, fabrication and integration on a chip via the standard top-down lithography process are strongly desired. The chief bottleneck to achieving lithography of perovskites lies in their reactivity to chemicals used for lithography as illustrated by issues of instability, surface roughness, and internal defects with the fabricated structures. The realization of lithographic perovskite single-mode lasers in large areas remains a challenge. In this work, a self-healing lithographic patterning technique using perovskite CsPbBr3 nanocrystals is demonstrated to realize high-quality and high-crystallinity single-mode laser arrays. The self-healing process is compatible with the standard lithography process and greatly improves the quality of lithographic laser cavities. A single-mode microdisk laser array is demonstrated with a low threshold of 3.8 µJ cm−2. Moreover, the control of the lasing wavelength is made possible over a range of up to 6.4 nm by precise fabrication of the laser cavities. This work presents a general and promising strategy for standard top-down lithography fabrication of high-quality perovskite devices and enables research on large-area perovskite-based integrated optoelectronic circuits.  相似文献   

15.
Inorganic lead halide perovskite has become an emerging material for modern photoelectric and electronic nanodevices due to its excellent optical and electronic properties. In view of its huge dielectric and electrical properties, inorganic CsPbBr3 perovskite is introduced into the piezoelectric nanogenerator (PENG). Based on one-step electrospinning of solutions containing CsPbBr3 precursors and polyvinylidene difluoride (PVDF), in situ growth of CsPbBr3 nanocrystals in PVDF fibers (CsPbBr3@PVDF composite fibers) with highly uniform size and spatial distribution are synthesized. The CsPbBr3@PVDF composite fibers based PENG reveals an open-circuit voltage (Voc) of 103 V and a density of short-circuit current (Isc) of 170  µ A cm−2, where the Voc is comparable to the state-of-the-art hybrid composite piezoelectric nanogenerators (PENGs) and the density of Isc is 4.86 times higher than that of lead halide perovskites counterpart ever reported. Moreover, CsPbBr3@PVDF composite fibers based PENG exhibits fundamentally improved thermal/water/acid–base stabilities. This study suggests that the CsPbBr3@PVDF composite fiber is a good candidate for fabricating high-performance PENGs, promising application potentials in mechanical energy harvesting and motion sensing technologies.  相似文献   

16.
Self-assembly of nanocrystals into controlled structures while uncompromising their properties is one of the key steps in optoelectronic device fabrication. Herein, zigzag CsPbBr3 perovskite nanocrystals are demonstrated with a precise number of components with nanocube morphology, these can be successfully obtained through a dipole-induced self-assembly process. The addition of a trace amount of deionized water facilitates the transfer from CsPbBr3 nanocubes to intermediates of CsPb2Br5 and Cs3In2Br9, which then fastly release reaction monomers leading to further homogenous nucleation of CsPbBr3 nanocubes, followed by the formation of zigzag CsPbBr3 nanocrystals through a dipole-induced self-assembly process. Dipole moment along <110> axis is found to be the driving force for the assembly of nanocubes into zigzag nanocrystals. The zigzag CsPbBr3 nanocrystals exhibit desirable optical properties comparable to their nanocube counterparts and offer advantages for amplified spontaneous emission and lasing applications with low pump thresholds of 3.1 and 6.02 µJ cm−2, respectively. This study not only develops a strategy for producing highly controlled zigzag perovskite nanocrystals and provides insights on the dipole-induced self-assembly mechanisms, but also opens an avenue for their application in lasing.  相似文献   

17.
Here, a detailed characterization of the optical gain properties of sky‐blue‐light‐emitting pyrene‐cored 9,9‐dialkylfluorene starbursts is reported; it is shown that these materials possess encouragingly low laser thresholds and relatively high thermal and environmental stability. The materials exhibit high solid‐state photoluminescence (PL) quantum efficiencies (>90%) and near‐single‐exponential PL decay transients with excited state lifetimes of ~1.4 ns. The thin‐film slab waveguide amplified spontaneous emission (ASE)‐measured net gain reaches 75–78 cm?1. The ASE threshold energy is found to remain unaffected by heating at temperatures up to 130 °C, 40 to 50 °C above Tg. The ASE remained observable for annealing temperatures up to 170 or 200 °C. 1D distributed feedback lasers with 75% fill factor and 320 nm period show optical pumping thresholds down to 38–65 Wcm?2, laser slope efficiencies up to 3.9%, and wavelength tuning ranges of ~40 nm around 471–512 nm. In addition, these lasers have relatively long operational lifetimes, with N1/2 ≥ 1.1 × 105 pulses for unencapsulated devices operated at ten times threshold in air.  相似文献   

18.
The fabrication of high‐quality cesium (Cs)/formamidinium (FA) double‐cation perovskite films through a two‐step interdiffusion method is reported. Csx FA1‐x PbI3‐y(1‐x )Bry(1‐x ) films with different compositions are achieved by controlling the amount of CsI and formamidinium bromide (FABr) in the respective precursor solutions. The effects of incorporating Cs+ and Br? on the properties of the resulting perovskite films and on the performance of the corresponding perovskite solar cells are systematically studied. Small area perovskite solar cells with a power conversion efficiency (PCE) of 19.3% and a perovskite module (4 cm2) with an aperture PCE of 16.4%, using the Cs/FA double cation perovskite made with 10 mol% CsI and 15 mol% FABr (Cs0.1FA0.9PbI2.865Br0.135) are achieved. The Cs/FA double cation perovskites show negligible degradation after annealing at 85 °C for 336 h, outperforming the perovskite materials containing methylammonium (MA).  相似文献   

19.
Self-assembly of lead halide perovskite nanocrystals (NCs) into close-packed, long-range-ordered nanostructures can effectively modulate their photoelectronic properties, yet significantly challenging. Herein, an efficient approach is reported to induce the hierarchical self-assembly of perovskite CsPbBr3 NCs by phase transition using chiral cysteine ligands, yielding asymmetric Cs4PbBr6 nanorods (NRs) with the circularly polarized luminescent response. An interfacial phase transition process is found during the conversion of CsPbBr3 nanocubes to Cs4PbBr6 NCs initiated by cysteine molecules. Then the Cs4PbBr6 NCs aggregate sequentially to form nanoclusters, which further self-assemble into the chiral Cs4PbBr6 NRs. Molecular dynamics simulations reveal that the Cs4PbBr6 nanochains gradually approach each other to achieve an asymmetric structure, and the simulated circular dichroism spectrum further supports the formation of a chiral structure. This work offers a facile method for the hierarchical chiral self-assembly of lead halide perovskite nanostructures, which brings new insights to explore chiral nanostructures by modulating the surface chemistry and post self-assembly.  相似文献   

20.
Recently, newly engineered all‐inorganic cesium lead halide perovskite nanocrystals (IPNCs) (CsPbX3, X = Cl, Br, I) are discovered to possess superior optical gain properties appealing for solution‐processed cost‐effective lasers. Yet, the potential of such materials has not been exploited for practical laser devices, rendering the prospect as laser media elusive. Herein, the challenging but practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 IPNCs, featuring low threshold (9 µJ cm?2), directional output (beam divergence of ≈3.6°), and favorable stability, are realized for the first time. Notably, the lasing wavelength can be tuned across the red, green, and blue region maintaining comparable thresholds, which is promising in developing single‐source‐pumped full‐color visible lasers. It is fully demonstrated that the characteristics of the VCSELs can be versatilely engineered by independent adjustment of the cavity and solution‐processable nanocrystals. The results unambiguously reveal the feasibility of the emerging CsPbX3 IPNCs as practical laser media and represent a significant leap toward CsPbX3 IPNC‐based laser devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号