首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taken the unlimited Na reservoir worldwide, battery technology based on Na-ion chemistry poses as an ideal candidate for large-scale energy storage systems. Especially, with metallic Na replacing traditional carbon anodes, it's able to maximize the energy density inexpensively. Nevertheless, sodium metal batteries (SMBs) face intrinsically poor stability due to their highly-reactive nature, where low Coulombic efficiency and short lifetime are often witnessed. The situation can be further aggravated at low temperatures due to insurmountable kinetic barriers. Herein, a 1,3-dioxolane-based quasi-solid-state electrolyte (PDGE) is proposed with a high ionic conductivity of 3.68 mS cm−1 even at −20 C for SMBs. Moreover, a weak solvation environment is tailored by PDGE, which possesses a high Na+ transference number of 0.7. Concurrently, the solid electrolyte interphase induced from PDGE presents inorganic Na2O, NaF as the major components, which offers accelerated Na+ diffusion and superior stability upon long-term cycling. With such a quasi-solid-state electrolyte, the Na/Na3V2(PO4)3 full cell exhibits great stability over 1000 cycles at −20 C. This study has significant implications to the development for SMBs under low-temperature conditions.  相似文献   

2.
Introducing sodium as anode to develop sodium metal batteries (SMBs) is a promising approach for improving the energy density of sodium-ion batteries. However, fatal problems, such as uncontrollable sodium dendrite growth, unstable solid electrolyte interphase (SEI) in low-cost carbonate-based electrolytes, and serious safety issues, greatly impede the practical applications. Here, a multifunctionalized separator is rationally designed, by coating PP separator (<25 µm) with a solid-state NASICON-type fast ionic conductor layer (NZSP@PP) to replace the widely used thick glass fiber separator (>200 µm) and successfully solves all of the above problems, and for the first time creats high performance SMBs by using Na3V2(PO4)3 (NVP) cathodes in pouch cell. The Na||NVP full cells can stably cycle over 1200 times with capacity retention of 80% at a high rate of 10 C and deliver a specific capacity of 80 mAh g−1 even at high rate of 30 C, indicating extraordinary fast-charging characters. The full SMBs can also stably cycle 200 times with a retention of 96.4% under high NVP loading of 10.7 mg cm−2. Most importantly, the SMB pouch cell can also deliver a long-life cycles as well as high-temperature battery performance, which guarantees the safety of SMBs in practical application.  相似文献   

3.
Lithium metal batteries (LMBs) attract considerable attention for their incomparable energy density. However, safety issues caused by uncontrollable lithium dendrites and highly flammable electrolyte limit large-scale LMBs applications. Herein, a low-cost, thermally stable, and low environmentally-sensitive lithium nitrate (LiNO3) is proposed as the only lithium salt to incorporate with nonflammable triethyl phosphate and fluoroethylene carbonate (FEC) co-solvent as the electrolyte anticipated to enhance the performance of LMBs. Benefiting from the presence of NO3 and FEC with strong solvation effect and easily reduced ability, a Li3N–LiF-rich stable solid electrolyte interphase is constructed. Compared to commercial electrolytes, the proposed electrolyte has a high Coulombic efficiency of 98.31% in Li-Cu test at 1 mA cm−2 of 1.0 mAh cm−2 with dendrite-free morphology. Additionally, the electrolyte system shows high voltage stability and cathode electrolyte interphase film-forming properties with stable cycling performances, which exhibit outstanding capacity retention rates of 96.39% and 83.74% after 1000 cycles for LFP//Li and NCM811//Li, respectively. Importantly, the non-flammable electrolyte delays the onset of combustion in lithium metal soft pack batteries by 255 s and reduces the peak heat release by 21.02% under the continuous external high-temperature heating condition. The novel electrolyte can contribute immensely to developing high-electrochemical-performance and high-safety LMBs.  相似文献   

4.
Sodium (Na) metal batteries are nowadays appealing due to high specific capacity and low cost. However, major caveats including severe Na dendrite growth, unstable solid electrolyte interphase formation, and poor mechanical robustness have hampered its practicability. In this report, a highly sodiophilic and conductive host harnessing hierarchical vertical graphene (VG) cultivator and Co nanoparticle/N-doped carbon decorator (Co-VG/CC) is designed to accommodate Na metal throughout a facile infusion route. The strong interaction between Co-VG/CC and Na is realized by sodiophilic Co nanoparticle/N-doped carbon hybrid, resulting in excellent structural stability of the electrode. The well-regulated Na adsorption behavior and uniform stripping/plating mechanism is systematically investigated via theoretical simulation in harmonization with in situ/ex situ electroanalytical analysis. In consequence, as-derived Na@Co-VG/CC electrode effectively inhibits the dendrite formation, resulting in promising electrochemical performances in symmetric cell configuration (functioning at an elevated rate of 5.0 mA cm−2 under 5.0 mAh cm−2 for 280 h, delivering a high capacity of 6.0 mAh cm−2 at 3.0 mA cm−2 for 1000 h and maintaining an ultralong lifespan up to 2000 h). Meanwhile, assembled flexible Na metal battery full cell can sustain to work for 120 h, representing a great advance in practical energy storage applications.  相似文献   

5.
Sodium-metal batteries (SMBs) employing transition-metal-free cathodes are of great importance for energy storage applications that require low cost and high energy density. A strategy to enhance the energy density of transition-metal-free-cathode SMBs by transforming the electrolyte from a dead mass to an energy-storage contributor is reported. NaI is used for the partial substitution of NaClO4 in the electrolyte and thus provides the additional electrochemistry of I3/I redox couple to enhance battery performance. Graphene oxide (GO) encapsulated mesoporous (10 nm) carbon spheres (N-MCS@GO) that are nitrogen-doped (15.71 at%) are fabricated as the cathode for the I3/I redox enhanced SMBs. It is experimentally demonstrated that: the mesoporous structure increases the capacitive energy storage by providing a substantial interface that enhances the electrochemistry of I3/I redox couples; and encapsulation of the mesoporous carbon spheres with GO suppresses self-discharge and increases Coulombic efficiencies from 70.4% to 91.9%. In full-cell configuration, N-MCS@GO working with the NaI-activated electrolyte can deliver a capacity of 279.6 mAh g−1 with an energy density of 459.2 Wh kg−1 in 0.5–3 V at 200 mA g−1. I3/I redox in the full cell maintains its activity without obvious decay after 1000 cycles at 1 A g−1, highlighting the practical application of the I3/I redox enhanced SMBs.  相似文献   

6.
Sodium metal batteries are promising for cost-effective energy storage, however, the sluggish ion transport in electrolytes and detrimental sodium-dendrite growth stall their practical applications. Herein, a cross-linking quasi-solid electrolyte with a high ionic conductivity of 1.4 mS cm−1 at 25 °C is developed by in-situ polymerizing poly (ethylene glycol) diacrylate-based monomer. Benefiting from the refined solvation structure of Na+ with a much lower desolvation barrier, random Na+ diffusion on the Na surface is restrained, so that the Na dendrite formation is suppressed. Consequently, symmetrical Na||Na cells employing the electrolyte can be cycled >2000 h at 0.1 mA cm−2. Na3V2(PO4)3||Na batteries reveal a high discharge specific capacity of 66.1 mAh g−1 at 15 C and demonstrate stable cycling over 1000 cycles with a capacity retention of 83% at a fast rate of 5 C.  相似文献   

7.
Sodium metal (Na) anodes are considered the most promising anode for high-energy-density sodium batteries because of their high capacity and low electrochemical potential. However, Na metal anode undergoes uncontrolled Na dendrite growth, and unstable solid electrolyte interphase layer (SEI) formation during cycling, leading to poor coulombic efficiency, and shorter lifespan. Herein, a series of Na-ion conductive alloy-type protective interface (Na-In, Na-Bi, Na-Zn, Na-Sn) is studied as an artificial SEI layer to address the issues. The hybrid Na-ion conducting SEI components over the Na-alloy can facilitate uniform Na deposition by regulating Na-ion flux with low overpotential. Furthermore, density functional study reveals that the lower surface energy of protective alloys relative to bare Na is the key factor for facilitating facile ion diffusion across the interface. Na metal with interface layer facilitates a highly reversible Na plating/stripping for ≈790 h, higher than pristine Na metal (100 h). The hybrid self-regulating protective layers exhibit a high mechanical flexibility to promote dendrite free Na plating even at high current density (5 mA cm−2), high capacity (10 mAh cm−2), and good performance with Na3V2(PO4)3 cathode. The current study opens a new insight for designing dendrite Na metal anode for next generation energy storage devices.  相似文献   

8.
Developing solid-state electrolytes with good compatibility for high-voltage cathodes and reliable operation of batteries over a wide-temperature-range are two bottleneck requirements for practical applications of solid-state metal batteries (SSMBs). Here, an in situ quasi solid-state poly-ether electrolyte (SPEE) with a nano-hierarchical design is reported. A solid-eutectic electrolyte is employed on the cathode surface to achieve highly-stable performance in thermodynamic and electrochemical aspects. This performance is mainly due to an improved compatibility in the electrode/electrolyte interface by nano-hierarchical SPEE and a reinforced interface stability, resulting in superb-cyclic stability in Li || Li symmetric batteries ( > 4000 h at 1 mA cm−2/1 mAh cm−2; > 2000 h at 1 mA cm−2/4 mAh cm−2), which are the same for Na, K, and Zn batteries. The SPEE enables outstanding cycle-stability for wide-temperature operation (15–100 ° C) and 4 V-above batteries (Li || LiCoO2 and Li || LiNi0.8Co0.1Mn0.1O2). The work paves the way for development of practical SSMBs that meet the demands for wide-temperature applicability, high-energy density, long lifespan, and mass production.  相似文献   

9.
All-solid-state sodium (Na) batteries (ASSSBs) using sulfide-based solid electrolytes (SEs) have attracted intensive attention due to their superior safety, high energy density, and low cost. However, the interfacial issue is one of the biggest challenges to achieve high-performance sulfide-based ASSSBs due to the serious reactions between active Na metal and sulfide SEs at the interface. To address the interfacial challenges, a simple and efficient approach by introducing a phase transition polymer electrolyte as an interlayer to stabilize the interface is proposed. Na3SbS4 as a model sulfide SE is used to demonstrate the interlayer strategy to stabilize the interface by preventing the detrimental reactions and inhibiting Na dendrites. As a result, stable Na plating/stripping is observed in Na symmetric cells under the current density of 0.1 mA cm−2. Moreover, ASSSBs with Na metal and TiS2 electrode deliver long-term stability over 300 cycles remaining a specific capacity above 100 mAh g−1, and FeS2||Na cells exhibit an impressive specific capacity of up to 200 mAh g−1 after the 20th cycles. This study demonstrates an efficient strategy to address interfacial challenges between sulfide SEs and Na metal, which contributes to the development of ASSSBs in next-generation energy storage systems.  相似文献   

10.
Sodium metal batteries (SMBs) using gel polymer electrolytes (GPEs) with high theoretical capacity and low production cost are regarded as a promising candidate for high energy-density batteries. However, the inherent flammability of GPEs and uncontrolled Na dendrite caused by inferior mechanical properties and interfacial stability hinder their practical applications. Herein, an anion-trapping fireproof composite gel electrolyte (AT-FCGE) is designed through a chemical grafting–coupling strategy, where functionalized boron nitride nanosheets (M-BNNs) used as both nanosized crosslinker and anion capturer are coupled with poly(ethylene glycol)diacrylate in poly(vinylidene fluoride-co-hexafluoropropylene) matrix, to expedite Na+ transport and suppress dendrite growth. Experimental and calculation studies suggest that the anion-trapping effect of M-BNNs with abundant Lewis-acid sites can promote the dissociation of salts, thus remarkably improving the ionic conductivity and Na+ transference number. Meanwhile, the formation of highly crosslinked semi-interpenetrating network can effectively in situ encapsulate non-flammable phosphate without sacrificing the mechanical properties. Consequently, the resulting AT-FCGE shows significantly enhanced Na+ conductivity, mechanical properties, and excellent interfacial stability. The AT-FCGE enables a long-cycle stability dendrite-free Na/Na symmetric cell, and prominent electrochemical performance is demonstrated in solid-state SMBs. The approach provides a broader promise for the great potential of fire-retardant gel electrolytes in high-performance SMBs and the beyond.  相似文献   

11.
State-of-the-art lithium (Li)-ion batteries employ silicon anode active material at a limited fraction while strongly relying on fluoroethylene carbonate (FEC) electrolyte additive exceeding 10 wt.% to enable stable cycling. The swelling issue of silicon in the aspect of solid electrolyte interphase (SEI) instability and a risk of safety hazards and high manufacturing cost due to FEC has motivated the authors to design a well-working fluorinated additive substitute. High-capacity cells employing nickel-rich oxide cathode are pursued by operating at > 4.2 V versus Li/Li+, for which anodic stability of electrolyte is required. Herein, a highly effective new ambifunctional additive of icosafluoro-15-crown 5-ether is proposed at a little fraction of 0.4 wt.% for the stabilized interfaces and reduced swelling of high capacity (3.5 mAh cm−2) 5 wt.% SiO-graphite anode and LiNi0.88Co0.08Mn0.04O2 cathode. Utilizing together with a lowered fraction of FEC, reversible long 300 cycles at 4.35 V and 1 C (225 mA g−1) are achieved. Material characterization results reveal that such stabilization is derived from the surface passivation of both anode and cathode with perfluoro ether, LiF, and LixPFy species. The present study gives insight into electrolyte formulation design with lower cost and both-side stabilization strategies for silicon and nickel-rich active materials and their interfaces.  相似文献   

12.
Although sodium–sulfur (Na–S) batteries present the great prospects of high energy density, long cyclability, and sustainability, their deployment is heavily encumbered by safety, practicality, and versatility issues engendered by their high operating temperatures above 300 °C. Lowering the operating temperatures impedes the performance of Na–S batteries due to the formation of insulating S/polysulfides, diminished Na ion conduction in the β”-alumina solid electrolyte (BASE), the Na metal dendrite growth at temperatures below its melting point, and the shuttle effect occurring in the absence of the BASE. Herein, a Na–S battery that integrates a dual electrolyte consisting of the BASE and a novel inorganic ionic liquid is proposed for intermediate-temperature operations of 150 °C. Investigations reveal the ionic liquid to have high ionic conductivity, wide electrochemical window, and excellent thermal and chemical stability, making it propitious for intermediate-temperature operations. The high reversible capacity of 795 mAh (g-S)−1 at 0.1 mA (electrode area: 0.785 cm2) and an average capacity of 381 mAh (g-S)−1 achieved over 1000 cycles at 0.5 mA validate the use of ionic liquids in dual electrolyte systems to improve Na–S performance.  相似文献   

13.
Lithium (Li) metal has been considered as an important substitute for the graphite anode to further boost the energy density of Li‐ion batteries. However, Li dendrite growth during Li plating/stripping causes safety concern and poor lifespan of Li metal batteries (LMB). Herein, fluoroethylene carbonate (FEC) additives are used to form a LiF‐rich solid electrolyte interphase (SEI). The FEC‐induced SEI layer is compact and stable, and thus beneficial to obtain a uniform morphology of Li deposits. This uniform and dendrite‐free morphology renders a significantly improved Coulombic efficiency of 98% within 100 cycles in a Li | Cu half‐cell. When the FEC‐protected Li metal anode matches a high‐loading LiNi0.5Co0.2Mn0.3O2 (NMC) cathode (12 mg cm?2), a high initial capacity of 154 mAh g?1 (1.9 mAh cm?2) at 180.0 mA g?1 is obtained. This LMB with conversion‐type Li metal anode and intercalation‐type NMC cathode affords an emerging energy storage system to probe the energy chemistry of Li metal protection and demonstrates the material engineering of batteries with very high energy density.  相似文献   

14.
Highly concentrated electrolytes (HCEs) significantly improve the stability of lithium metal anodes, but applications are often impeded by their limitation of density, viscosity, and cost. Here, fluorobenzene (FB), an economical hydrocarbon with low density and low viscosity, is demonstrated as a bifunctional cosolvent to obtain a novel FB diluted highly concentrated electrolyte (FB-DHCE). First, the addition of FB suppresses the decomposition of dimethoxyethane (DME) on the Li metal by strengthening the interactions of DME and FSI around Li+. Second, FB efficiently elevates the content of LiF in the solid electrolyte interphase (SEI) based on its electrochemical reduction reaction. The unique solvation and interfacial chemistry of FB-DHCE enable dendrite-free deposition of lithium with high Coulombic efficiency (up to 99.3%) and prolong cycling life (over 500 cycles at 1 mA cm−2). The performance of FB-DHCE is further demonstrated in full cells under practical conditions, including ambient to low temperature (–20 °C), high areal capacity (7.6 mAh cm−2), high current density (3 mA cm−2), limited excess Li (20 µm Li), and lean electrolyte (3 g Ah−1). Employing FB as a cosolvent not only opens a novel pathway to stabilize Li metal anodes, but also could greatly advance the development of Li metal batteries.  相似文献   

15.
Rational design of promising electrolyte is considered as an effective strategy to improve the cycling stability of lithium metal batteries (LMBs). Here, an elaborately designed ionic liquid-based electrolyte is proposed that is composed of lithium bis(trifluoromethanesulfonyl)imide as the lithium salt, 1-ethyl-3-methylimidazolium nitrate ionic liquid ([EMIm][NO3] IL) and fluoroethylene carbonate (FEC) as the functional solvents, and 1,2-dimethoxyethane (DME) as the diluent solvent. Using [EMIm][NO3] IL as the solvent component facilitates a special Li+-coordinated NO3 solvation structure, which enables the continues electrochemical reduction of solvated NO3 and the formation of remarkably stable and conductive solid electrolyte interface. With FEC as another functional solvent and DME as the diluent solvent, the formulated electrolyte delivers high oxidative stability and ionic conductivity, and endows improved electrochemical reaction kinetics. Therefore, the formulated electrolyte demonstrates exceedingly reversible and stable Li stripping/plating behavior with high average Coulombic efficiency (98.8%) and ultralong cycling stability (3500 h). Notably, the high-voltage Li|LiNi0.8Co0.1Mn0.1O2 full cell with IL-based electrolyte exhibits enhanced cyclability with a capacity retention of 65% after 200 cycles under harsh conditions of low negative/positive ratio (3.1) and lean electrolyte (2.5 µL mg−1). This study creates the first NO3-based ionic liquid electrolyte and evokes the avenue for practical high-voltage LMBs.  相似文献   

16.
The formation of lithiophobic inorganic solid electrolyte interphase (SEI) on Li anode and cathode electrolyte interphase (CEI) on the cathode is beneficial for high-voltage Li metal batteries. However, in most liquid electrolytes, the decomposition of organic solvents inevitably forms organic components in the SEI and CEI. In addition, organic solvents often pose substantial safety risks due to their high volatility and flammability. Herein, an organic-solvent-free eutectic electrolyte based on low-melting alkali perfluorinated-sulfonimide salts is reported. The exclusive anion reduction on Li anode surface results in an inorganic, LiF-rich SEI with high capability to suppress Li dendrite, as evidenced by the high Li plating/stripping CE of 99.4% at 0.5  mA cm−2 and 1.0 mAh cm−2, and 200-cycle lifespan of full LiNi0.8Co0.15Al0.05O2 (2.0 mAh cm−2) || Li (20 µm) cells at 80 °C. The proposed eutectic electrolyte is promising for ultrasafe and high-energy Li metal batteries.  相似文献   

17.
Solid-state sodium batteries have garnered considerable interest. However, their electrochemical performance is hampered by severe interfacial resistance between sodium metal and inorganic solid electrolytes, as well as Na dendrite growth within the electrolytes. To address these issues, a uniform and compact SnF2 film is first introduced onto the surface of the inorganic solid electrolyte Na3.2Zr1.9Ca0.1Si2PO12 (NCZSP) to improve contact through an effective and straightforward process. Through experiments and computations, the in situ conversion reaction between SnF2 and molten Na is adequately confirmed, resulting in a composite conductive layer containing NaxSn alloys and NaF at the interface. As a result, the interfacial resistance of Na/NCZSP is significantly decreased from 813 to 5 Ω cm2, and the critical current density is dramatically increased to 1.8 mA cm−2, as opposed to 0.2 mA cm−2 with bare NCZSP. The symmetric cell is able to cycle stably at 0.2 mA cm−2 for 1300 h at 30 °C and exhibits excellent current tolerance of 0.3 and 0.5 mA cm−2. Moreover, the Na3V2(PO4)3/SnF2-NCZSP/Na full cell displays excellent rate performance and cycling stability. The SnF2-induced interlayer proves significant in improving interfacial contact and restraining sodium dendrite propagation, thus promoting the development of solid-state sodium batteries.  相似文献   

18.
Lithium metal batteries (LMBs) have the potential to significantly increase the energy density of advanced batteries in the future. Nonetheless, the dendritic lithium structures and low Coulombic efficiency (CE) of LMBs currently impede their applied implementation. Herein, a sulfite-based electrolyte (SBE/FEC), including 1.0 m lithium bis(fluorosulfonyl)imide in a blend of ethylene sulfite and diethyl sulfite, and 5 wt% fluoroethylene carbonate is proposed. SBE/FEC is a highly efficient inhibitor against the growth of lithium dendrites through the formation of robust solid electrolyte interphase (SEI) layer. Raman spectroscopy and theoretical calculation indicate that in SBE/FEC, a significant portion of FSI exists in associated complexes, playing a vital role in the creation of LiF-rich passivation. Besides, the sulfite solvents decompose and yield polysulfide complexes in the SEI layer. A direct correlation between the proportion of cation–anion complexes and the contact angle between electrolyte and separator is elucidated through molecular dynamics simulations. The SBE/FEC system exhibits high CEs (98.3%) with Li||Cu cells, along with a steady discharge capacity of ≈137 mA h g−1 in Li||LiFePO4 cell. This study presents an effective approach for enhancing LMBs with sulfite-based electrolytes, which can lead to high-energy-density next-generation rechargeable batteries.  相似文献   

19.
Ionic liquid (IL) electrolytes with concentrated Li salt can ensure safe, high‐performance Li metal batteries (LMBs) but suffer from high viscosity and poor ionic transport. A locally concentrated IL (LCIL) electrolyte with a non‐solvating, fire‐retardant hydrofluoroether (HFE) is presented. This rationally designed electrolyte employs lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1‐methyl‐1‐propyl pyrrolidinium bis(fluorosulfonyl)imide (P13FSI) and 1,1,2,2‐tetrafluoroethyl 2,2,3,3‐tetrafluoropropyl ether (TTE) as the IL and HFE, respectively (1:2:2 by mol). Adding TTE enables a Li‐concentrated IL electrolyte with low viscosity and good separator wettability, facilitating Li‐ion transport to the Li metal anode. The non‐flammability of TTE contributes to excellent thermal stability. Furthermore, synergy between the dual (FSI/TFSI) anions in the LCIL electrolyte can help modify the solid electrolyte interphase, increasing Li Coulombic efficiency and decreasing dendritic Li deposition. LMBs (Li||LiCoO2) employing the LCIL electrolyte exhibit good rate capability (≈89 mAh g?1 at 1.8 mA cm?2, room temperature) and long‐term cycling (≈80% retention after 400 cycles).  相似文献   

20.
The practical use of polyethylene oxide polymer electrolyte in the solid-state sodium metallic batteries (SSMBs) suffers from the retard Na+ diffusion at the room temperature, mechanical fragility as well as the oxidation tendency at high voltages. Herein, a hetero-layered composite polymeric electrolyte (CPE) is proposed to enable the simultaneous interfacial stability with the high voltage cathodes (till 4.2 V) and Na metallic anode. Being incorporated within the polymer matrix, the sand-milled Na3Zr2Si2PO12 nanofillers and nanocellulose scaffold collectively endow the thin-layer (25 µm), ultralightweight (1.65 mg cm−2) CPE formation with an order of magnitude enhancement of the mechanical strength (13.84 MPa) and ionic conductivity (1.62 × 10−4 S cm−1) as compared to the pristine polymer electrolyte, more importantly, the improved dimension stability up to 180 °C. Upon the integration of the hetero-layered CPE with the iron hexacyanoferrate FeHCF cathode (1 mAh cm−2) and the Na foil, the cell model can achieve the room-temperature cycling stability (93.73% capacity retention for 200 cycles) as well as the high temperature tolerance till 80 °C, which inspires a quantum leap toward the surface-wetting-agent-free, energy-dense, wide-temperature-range SSMB prototyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号