首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Stem cell transplantation via direct injection is a minimally invasive strategy being explored for treatment of a variety of injuries and diseases. Injectable hydrogels with shear moduli <50 Pa can mechanically protect cells during the injection process; however, these weak gels typically biodegrade within 1–2 weeks, which may be too fast for many therapeutic applications. To address this limitation, an injectable hydrogel is designed that undergoes two different physical crosslinking mechanisms. The first crosslinking step occurs ex vivo through peptide‐based molecular recognition to encapsulate cells within a weak gel that provides mechanical protection from injection forces. The second crosslinking step occurs in situ to form a reinforcing network that significantly retards material biodegradation and prolongs cell retention time. Human adipose‐derived stem cells are transplanted into the subcutaneous space of a murine model using hand‐injection through a 28‐gauge syringe needle. Cells delivered within the double‐network hydrogel are significantly protected from mechanical damage and have significantly enhanced in vivo cell retention rates compared to delivery within saline and single network hydrogels. These results demonstrate that in situ formation of a reinforcing network within an already existing hydrogel can greatly improve transplanted cell retention, thereby enhancing potential regenerative medicine therapies.  相似文献   

2.
Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design of an ideal material with tunable properties that can mimic different tissue niches and regulate stem cell behaviors remains an unfulfilled promise. Here, an injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed with highly tunable properties, from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within about 2 min under the physiological condition. Murine adipose‐derived stem cells (ASCs) can be easily encapsulated into the hydrogel, which supports ASC growth and maintains their stemness. The hydrogel mechanical properties, biodegradability, and cellular responses can be finely controlled by changing hydrogel formulation and cell seeding densities. An animal study shows that the in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure using a murine wound healing model. These data suggest that injectable PEG–gelatin hydrogel can be used for regulating stem cell behaviors in 3D culture, delivering cells for wound healing and other tissue regeneration applications.  相似文献   

3.
Effective therapies capable of simultaneously inhibiting inflammation and promoting bone healing remain to be developed for inflammatory bone disease. Stem cell therapies hold great promise for a variety of diseases, but their translation is hampered by low cell survival, rapid clearance, and limited functional integration of transplanted stem cells in target tissues. Herein, a multifunctional hydrogel-based stem cell niche engineering strategy is reported for the treatment of inflammatory bone loss. By rationally integrating different functional modules, an injectable hydrogel-based stem niche is engineered, which possesses temperature-triggered gelling performance, inflammation/oxidative stress-resolving activity, stem-cell binding and survival-enhancing capacity, and osteogenesis-promoting capability. Using ectomesenchymal stem cells (EMSCs), effectiveness of this functionally advanced synthetic stem cell niche is demonstrated in rats with periodontitis, a representative inflammatory bone loss disease. Synergistic effects of the multifunctional hydrogel and EMSCs are also confirmed, with respect to normalizing the pathological microenvironment and improving alveolar bone regeneration in the periodontal tissue. Mechanistically, inflammation/oxidative stress-resolving and osteogenic differentiation promoting capacities of the synthetic stem cell niche are mainly achieved by an incorporated nanotherapy via the GDF15/Atf3/c-Fos axis of the MAPK signaling pathway. Besides periodontitis, the newly engineered hydrogel-stem cell therapies are promising for the treatment of other inflammatory bone defects.  相似文献   

4.
5.
Micrometer‐sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multicell coculture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user‐defined control of the microenvironments, from the order of singly encapsulated cells to entire 3D cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.  相似文献   

6.
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.  相似文献   

7.
Low vaccine immunogenicity and tumor heterogenicity greatly limit the therapeutic effect of tumor vaccine. In this study, a novel injectable adhesive hydrogel, based on thermosensitive nanogels containing catechol groups and loaded with in situ-forming MnO2 nanoparticles, is constructed to overcome these issues. The concentrated nanogel dispersion transforms into an adhesive hydrogel in situ after intratumoral injection. The photothermal effect of the loaded MnO2 nanoparticles induces immunogenic cell death to release mass autologous tumor-derived protein antigens under near-infrared irradiation, which act as ideal immune stimulating substances avoiding the problem of tumor heterogenicity and are captured by the in situ-forming adhesive hydrogel. The antigens-captured adhesive hydrogel acts as an “antigen reservoir” and releases these captured antigens to recruit more dendritic cells to stimulate an intensive and lasting anti-tumor immune response mediated by CD8+ T cells. The primary tumors can be almost completely disappeared within 4 days without relapse, and the growth of the distal tumors and rechallenged tumors are also effectively inhibited by the treatment with the injectable adhesive hydrogel-based photothermal therapy. Therefore, the proposed “antigen reservoir” strategy shows the great potential application as an in situ-forming personalized vaccine to enhancing the cancer immune therapy.  相似文献   

8.
Clinical trials utilizing mesenchymal stem cells (MSCs) for severe vascular diseases have highlighted the need to effectively engraft cells and promote pro‐angiogenic activity. A functional material accomplishing these two goals is an ideal solution as spatiotemporal and batch‐to‐batch variability in classical therapeutic delivery can be minimized, and tissue regeneration would begin rapidly at the implantation site. Gelatin may serve as a promising biomaterial due to its excellent biocompatibility, biodegradability, and non‐immuno/antigenicity. However, the dissolution of gelatin at body temperature and quick enzymatic degradation in vivo have limited its use thus far. To overcome these challenges, an injectable, in situ crosslinkable gelatin was developed by conjugating enzymatically crosslinkable hydroxyphenyl propionic acid (GHPA). When MSCs are cultured in 3D in vitro or injected in vivo in GHPA, spontaneous endothelial differentiation occurs, as evidenced by marked increases in endothlelial cell marker expressions (Flk1, Tie2, ANGPT1, vWF) in addition to forming an extensive perfusable vascular network after 2‐week subcutaneous implantation. Additionally, favorable host macrophage response is achieved with GHPA as shown by decreased iNOS and increased MRC1 expression. These results indicate GHPA as a promising soluble factor‐free cell delivery template which induces endothelial differentiation of MSCs with robust neovasculature formation and favorable host response.  相似文献   

9.
Current osteochondral (OC) defect repair approaches using premade scaffolds face clinical limitations due to invasiveness, weak integrity, and/or insufficient interfacial bonding. An injectable hydrophobic laminous adhesive is developed that rapidly photocross-link subaqueously and forms robust bi-layered structure that orchestrates biophysical-chemical cues for stimulating OC repair. Liquid hydrophobic photo-cross-linkable poly (lactide-co-propylene glycol-co-lactide) dimethacrylates (PmLnDMA) are adopted as cartilage phase and PmLnDMA encapsulating methacrylated hydroxyapatite nanoparticles (PmLnDMA/MH) as the mineralized subchondral bone phase. Both phases exhibit strong interfacial bonding due to the presence of “CC”. Mechanotransduction and growth factor-mediated signaling pathways are enchanced by matching the mechanical properties of two phases to native cartilage and bone via systematical modulation of the adhesives’ composition and encapsulated growth factors’ release profile. This enhances mesenchymal stem cells’ commitment to corresponding chondrocytes and osteoblasts to augment OC repair in vitro and in vivo, and ultimately benefits patients suffering from OC fracture, osteoarthritis, and osteoporosis.  相似文献   

10.
Shear‐thinning, self‐healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. An injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins is presented. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine‐modified elastin‐like protein (ELP) and aldehyde‐modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by coherent anti‐Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a tenfold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks postinjection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP–HA hydrogels for injectable stem cell transplantation and tissue regeneration.  相似文献   

11.
Hydrogels, a class of materials with a 3D network structure, are widely used in various fields especially in biomedicine. Injectable hydrogels could facilitate the encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. With the rapid development of cancer immunotherapy, such injectable hydrogels have attracted wide attention for local immunomodulation to boost systemic anticancer immune responses, realizing more effective immunotherapy at lower doses. The latest progresses in the development of various smart injectable hydrogels for cancer immunotherapy are summarized here. Although applied locally, such injectable hydrogels can activate systemic antitumor immune responses, safely and effectively inhibiting the tumor metastasis and recurrence. Moreover, it is discussed how injectable hydrogel‐based cancer immunotherapy would contribute to the development of next generation of cancer treatment together with their potential for clinical translation.  相似文献   

12.
A polymer (mP) with thermogelling and metal coordinating properties is prepared by pyridine‐dicarboxylate (PDC) connected poly(ethylene glycol)‐poly(propylene glycol)‐poly(ethylene glycol) triblock copolymers. Tonsil‐derived mesenchymal stem cells (TMSCs) are incorporated in the mP hydrogel by increasing the temperature of the cell‐suspended aqueous mP solution to 37 °C. The TMSCs are randomly embedded in the in situ formed hydrogel at first; however, they aggregated to form live cell spheroids on day 7. In contrast, the spheroid formation is blocked in the Fe3+‐incorporating mP thermogel. Compared with the conventional 2D‐cultured stem cells, the stem cell spheroid in the 3D mP culture system exhibits significantly enhanced stemness biomarkers, angiogenic biomarkers, and anti‐inflammatory biomarkers in the growth medium. In addition, the stem cell spheroid exhibits significantly greater biomarker expression for osteogenic, chondrogenic, and adipogenic differentiations than the stem cells cultured in the 2D system in each induction medium. This study suggests that a simple injection of stem cells suspended in the current aqueous mP solution can lead to the spontaneous formation of stem cell spheroids with excellent multipotency and retention in the in situ formed thermogel, and thus opens a direct injectable method for the application of the stem cells at a target site.  相似文献   

13.
14.
Stem-cell-based therapeutic strategies are promising in the clinical treatment of intrauterine adhesions (IUAs), while endometrial regeneration still hardly restores the structure and function of the endometrium because of the inadequate microenvironment for the grafted stem cells and subsequent limited therapeutic efficiency. Herein, an injectable porous hydrogel scaffold (PH scaffold) with customizable shapes is presented by using a microfluidic-based 3D printing technique for adipose-derived stem cells (ADSCs) delivery to enhance endometrial regeneration. These scaffolds display a controllable interconnected porous structure, which not only facilitates the encapsulation of ADSCs within the scaffold but also supports the recovery to their original shapes after injection. Furthermore, the cell viability of the laden ADSCs is well-maintained post-injection, exhibiting promotive effects on cell migration, proliferation, and tube formation. Based on these features, an ADSCs-laden PH scaffold with a hollow endometrium-mimicking morphology is designed and in situ injected into the damaged endometrium in rats of IUAs. These results show that the ADSCs-laden PH scaffolds can enhance functional endometrial regeneration by suppressing the inflammatory response, promoting cell proliferation, and improving vascularization. Thus, it is believed that such unique 3D-printed porous scaffolds are promising candidates for cell delivery, which also provides a minimally-invasive and effective strategy for endometrial regeneration.  相似文献   

15.
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have emerged as an appealing alternative to cell therapy in regenerative medicine. Unlike bone marrow MSCs (BMSCs) cultured in vitro with normoxia, bone marrow in vivo is exposed to a hypoxic environment. To date, it remains unclear whether hypoxia preconditioning can improve the function of BMSC-derived EVs and be more conducive to bone repair. Herein, it is found that hypoxia preconditioned BMSCs secrete more biglycan (Bgn)-rich EVs via proteomics analysis, and these hypoxic EVs (Hypo-EVs) significantly promote osteoblast proliferation, migration, differentiation, and mineralization by activating the phosphatidylinositide 3-kinase/protein kinase B pathway. Subsequently, an injectable bioactive hydrogel composed of poly(ethylene glycol)/polypeptide copolymers is developed to improve the stability and retention of Hypo-EVs in vivo. The Hypo-EVs-laden hydrogel shows continuous liberation of Hypo-EVs for 3 weeks and substantially accelerates bone regeneration in 5-mm rat cranial defects. Finally, it is confirmed that Bgn in EVs is a pivotal protein regulating osteoblast differentiation and mineralization and exerts its effects through paracrine mechanisms. Therefore, this study shows that hypoxia stimulation is an effective approach to optimize the therapeutic effects of BMSC-derived EVs and that injectable hydrogel-based EVs delivery is a promising strategy for tissue regeneration.  相似文献   

16.
Many alternatives to human donor corneas are being developed to meet the global shortage of donated tissues. However, corneal transplantation remains the gold standard for diseases resulting in thinning corneas. In this study, transparent low energy photoactivated extracellular matrix-mimicking materials are developed for intrastromal injection to restore stromal thickness. The injectable biomaterials are comprised of short peptides and glycosaminoglycans (chondroitin, hyaluronic acid) that assemble into a hydrogel when pulsed with low-energy blue light. The dosage of pulsed-blue light needed for material activation is minimal at 8.5 mW cm−2, thus circumventing any blue light cytotoxicity. Intrastromal injection of these light-activated biomaterials in rat corneas shows that two iterations of the formulations remain stable in situ without stimulating significant inflammation or neovascularization. The use of low light intensities and the ability of the developed materials to stably rebuild and change the curvature of the cornea tissue make these formulations attractive for clinical translation.  相似文献   

17.
Biodegradable, hydrophobic, and injectable liquid polymers are capable of achieving the minimally invasive, sustained, and local release of drugs. These hydrophobic injectable polymers also have potential in the area of regenerative medicine where the biomaterial should be stable for a certain period and then degrade to allow the growth of cells/tissues. This review presents exclusive coverage of biocompatible hydrophobic injectable pasty or liquid polymers that can be injected without the use of any solvent for drug delivery, tissue augmentation, and regenerative medicine application. The synthesis methodologies of several major types of hydrophobic pasty polymers used in the biomedical fields and their properties with the foremost criteria to serve as injectable biomaterial for localized drug delivery and regenerative medicine is described. The hydrophobic biodegradable injectable polymers discussed are aliphatic polyesters, polycarbonates and polyanhydrides, prepared from: lactic acid, glycolic acid, caprolactone, aliphatic diols and diacids, hydroxy fatty acids, and triglycerides such as castor oil.  相似文献   

18.
In this paper, we propose a “casting” strategy to prepare intrinsically fluorescent, uniform and porous gelatin microgels with multi‐responsiveness. Gelatin microgels with tunable size were obtained by copying the structure of a porous CaCO3 template. The diameter of the gelatin microgels was sensitive to salt concentration and pH. Doxorubicin and Rhodamine B as model drugs were loaded into the microgels via electrostatic interaction and release of the payload was triggered by changing the salt concentration and pH, respectively. Cell experiments demonstrated that the gelatin microgels had an excellent biocompatibility and biodegradability. The merits of gelatin microgels such as tunable size, biocompatibility, and stimulus responsive upload and release of positively charged small molecules will permit the microgels as excellent carriers for drug delivery. The whole manufacturing process is furthermore environmental‐friendly involving no organic solvents and surfactants.  相似文献   

19.
20.
Hydrogel scaffolds that template the regeneration of tissue structures are widely explored; however, there is often a trade‐off between material properties, such as stiffness and interconnected pore size, that may be equally important in supporting tissue growth. Microporous annealed particle scaffolds are introduced to address this trade‐off while maintaining a flowable precursor; however, manufacturing throughput, reproducibility, and flexibility of hydrogel microparticle building blocks are limited, hindering widespread adoption. The scalable high‐throughput production of bioactive microgels for the formation of microporous tissue scaffolds in situ is presented. Using a parallelized step emulsification device, scalable high‐throughput generation of monodisperse microgels is achieved. Crosslinking is initiated downstream of droplet generation using pH modulation via proton acceptors dissolved in the oil phase. This approach enables continuous production of microgels for over 12 h while ensuring highly uniform physicochemical properties. Using this platform, the effects of local matrix stiffness on cell growth orthogonal to scaffold porosity are studied. Formation of injectable cell‐laden mechanically heterogeneous microporous scaffolds is also demonstrated. This approach is particularly suited for the formation of modular, multimaterial scaffolds in situ, which could be applied to 3D bioprinting or to form more complex scaffolds to enhance regeneration of irregular wounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号