首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work summarizes the recent progress on the thermal transport properties of 3D nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or thermoelectric devices or a high thermal conductivity for thermal interface materials used in the continuing miniaturization of electronics. A broad range of 3D nanostructures are discussed, ranging from colloidal crystals/assemblies, array structures, holey structures, hierarchical structures, to 3D nanostructured fillers for metal matrix composites and polymer composites. Different factors that impact the thermal conductivity of these 3D structures are compared and analyzed. This work provides an overall understanding of the thermal transport properties of various 3D nanostructures, which will shed light on the thermal management at nanoscale.  相似文献   

2.
Soft, elastically deformable composites can enable new generations of multifunctional materials for electronics, robotics, and reconfigurable structures. Liquid metal (LM) droplets dispersed in elastomer matrices represent an emerging material architecture that has shown unique combinations of soft mechanical response with exceptional electrical and thermal functionalities. These properties are strongly dependent on the material composition and microstructure. However, approaches to control LM microdroplet morphology to program mechanical and functional properties are lacking. Here, this limitation is overcome by thermo‐mechanically shaping LM droplets in soft composites to create programmable microstructures in stress‐free materials. This enables LM loadings up to 70% by volume with prescribed particle aspect ratios and orientation, enabling control of microstructure throughout the bulk of the material. Through this microstructural control in soft composites, a material which simultaneously achieves a thermal conductivity as high as 13.0 W m?1 K?1 (>70 × increase over polymer matrix) with low modulus (<1.0 MPa) and high stretchability (>750% strain) is demonstrated in stress‐free conditions. Such properties are required in applications that demand extreme mechanical flexibility with high thermal conductivity, which is demonstrated in soft electronics, wearable robotics, and electronics integrated into 3D printed materials.  相似文献   

3.
As the portable device hardware has been increasing at a noticeable rate, ultrathin thermal conducting materials (TCMs) with the combination of high thermal conductivity and excellent electromagnetic interface (EMI) shielding performance, which are used to efficiently dissipate heat and minimize EMI problems generated from electronic components (such as high speed processors), are urgently needed. In this work, graphene oxide (GO) films are fabricated by direct evaporation of GO suspension under mild heating, and ultrathin graphite‐like graphene films are produced by graphitizing GO films. Further investigation demonstrates that the resulting graphene film with only ≈8.4 μm in thickness not only possesses excellent EMI shielding effectiveness of ≈20 dB and high in‐plane thermal conductivity of ≈1100 W m‐1 K‐1, but also shows excellent mechanical flexibility and structure integrity during bending, indicating that the graphitization of GO film could be considered as a new alternative way to produce excellent TCMs with efficient EMI shielding.  相似文献   

4.
Polymer dielectrics find applications in modern electronic and electrical technologies due to their low density, durability, high dielectric breakdown strength, and design flexibility. However, they are not reliable at high temperatures due to their low mechanical integrity and thermal stability. Herein, a self‐assembled dielectric nanocomposite is reported, which integrates 1D polyaramid nanofibers and 2D boron nitride nanosheets through a vacuum‐assisted layer‐by‐layer infiltration process. The resulting nanocomposite exhibits hierarchical stacking between the 2D nanosheets and 1D nanofibers. Specifically, the 2D nanosheets provide a thermally conductive network while the 1D nanofibers provide mechanical flexibility and robustness through entangled nanofiber–nanosheet morphologies. Experiments and density functional theory show that the nanocomposites through thickness heat transfer processes are nearly identical to that of boron nitride due to synergistic stacking of polyaramid units onto boron nitride nanosheets through van der Waals interactions. The nanocomposite sheets outperform conventional dielectric polymers in terms of mechanical properties (about 4–20‐fold increase of stiffness), light weight (density ≈1.01 g cm?3), dielectric stability over a broad range of temperature (25–200 °C) and frequencies (103–106 Hz), good dielectric breakdown strength (≈292 MV m?1), and excellent thermal management capability (about 5–24 times higher thermal conductivity) such as fast heat dissipation.  相似文献   

5.
The discovery of graphene has stimulated the search for and investigations into other 2D materials because of the rich physics and unusual properties exhibited by many of these layered materials. Transition metal dichalcogenides (TMDs), black phosphorus, and SnSe among many others, have emerged to show highly tunable physical and chemical properties that can be exploited in a whole host of promising applications. Alongside the novel electronic and optical properties of such 2D semiconductors, their thermal transport properties have also attracted substantial attention. Here, a comprehensive review of the unique thermal transport properties of various emerging 2D semiconductors is provided, including TMDs, black‐ and blue‐phosphorene among others, and the different mechanisms underlying their thermal conductivity characteristics. The focus is placed on the phonon‐related phenomena and issues encountered in various applications based on 2D semiconductor materials and their heterostructures, including thermoelectric power generation and electron–phonon coupling effect in photoelectric and thermal transistor devices. A thorough understanding of phonon transport physics in 2D semiconductor materials to inform thermal management of next‐generation nanoelectronic devices is comprehensively presented along with strategies for controlling heat energy transport and conversion.  相似文献   

6.
Thermal conductivity is one of the most fundamental properties of solid materials. The thermal conductivity of ideal crystal materials has been widely studied over the past hundreds years. On the contrary, for amorphous materials that have valuable applications in flexible electronics, wearable electrics, artificial intelligence chips, thermal protection, advanced detectors, thermoelectrics, and other fields, their thermal properties are relatively rarely reported. Moreover, recent research indicates that the thermal conductivity of amorphous materials is quite different from that of ideal crystal materials. In this article, the authors systematically review the fundamental physical aspects of thermal conductivity in amorphous materials. They discuss the method to distinguish the different heat carriers (propagons, diffusons, and locons) and the relative contribution from them to thermal conductivity. In addition, various influencing factors, such as size, temperature, and interfaces, are addressed, and a series of interesting anomalies are presented. Finally, the authors discuss a number of open problems on thermal conductivity of amorphous materials and a brief summary is provided.  相似文献   

7.
Urged by the increasing power and packing densities of integrated circuits and electronic devices, efficient dissipation of excess heat from hot spot to heat sink through thermal interface materials (TIMs) is a growing demand to maintain system reliability and performance. In recent years, graphene-based TIMs received considerable interest due to the ultrahigh intrinsic thermal conductivity of graphene. However, the cooling efficiency of such TIMs is still limited by some technical difficulties, such as production-induced defects of graphene, poor alignment of graphene in the matrix, and strong phonon scattering at graphene/graphene or graphene/matrix interfaces. In this study, a 120  µ m-thick freestanding film composed of vertically aligned, covalently bonded graphene nanowalls (GNWs) is grown by mesoplasma chemical vapor deposition. After filling GNWs with silicone, the fabricated adhesive TIMs exhibit a high through-plane thermal conductivity of 20.4 W m−1 K−1 at a low graphene loading of 5.6 wt%. In the TIM performance test, the cooling efficiency of GNW-based TIMs is ≈ 1.5 times higher than that of state-of-the-art commercial TIMs. The TIMs achieve the desired balance between high through-plane thermal conductivity and small bond line thickness, providing superior cooling performance for suppressing the degradation of luminous properties of high-power light-emitting diode chips.  相似文献   

8.
Organic–inorganic hybrid materials are of significant interest owing to their diverse applications ranging from photovoltaics and electronics to catalysis. Control over the organic and inorganic components offers flexibility through tuning their chemical and physical properties. Herein, it is reported that a new organic–inorganic hybrid, [Mn(C2H6OS)6]I4, with linear tetraiodide anions exhibit an ultralow thermal conductivity of 0.15 ± 0.01 W m?1 K?1 at room temperature, which is among the lowest values reported for organic–inorganic hybrid materials. Interestingly, the hybrid compound has a unique 0D structure, which extends into 3D supramolecular frameworks through nonclassical hydrogen bonding. Phonon band structure calculations reveal that low group velocities and localization of vibrational energy underlie the observed ultralow thermal conductivity, which could serve as a general principle to design novel thermal management materials.  相似文献   

9.
Quantum well (QW) superlattice is one of the proposals to improve the thermoelectric properties and provide a rich platform for the next generation of thermoelectric device. Previous QW have two main challenges that need to be addressed: i) decrease the electron tunneling across the layers in the semiconductor-based multiple QWs (MQW), and ii) decrease the thermal conductivity in the oxide-based MQW. Herein, the study demonstrates amorphous based PbTe/amorphous-STO MQWs with ultrahigh power factor of 40.9 µW cm−1 K−2 and record low thermal conductivity of ≈0.49 W m−1 K−1 at room temperature. The high performance of PbTe/amorphous-STO MQWs is attributed to strong quantum confine effect and its intrinsic low thermal conductivity of amorphous superlattice structure. The results open up a new avenue toward modulating thermoelectric properties beyond traditional MQWs of thermoelectric materials.  相似文献   

10.
In this paper we review recent advances in nanoscale thermal and thermoelectric transport with an emphasis on the impact on integrated circuit (IC) thermal management. We will first review thermal conductivity of low-dimensional solids. Experimental results have shown that phonon surface and interface scattering can lower thermal conductivity of silicon thin films and nanowires in the sub-100-nm range by a factor of two to five. Carbon nanotubes are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal conductivities of thousands of W/mK and high mechanical strength. We then concentrate on the fundamental interaction between heat and electricity, i.e., thermoelectric effects, and how nanostructures are used to modify this interaction. We will review recent experimental and theoretical results on superlattice and quantum dot thermoelectrics as well as solid-state thermionic thin-film devices with embedded metallic nanoparticles. Heat and current spreading in the three-dimensional electrode configuration, allow removal of high-power hot spots in IC chips. Several III-V and silicon heterostructure integrated thermionic (HIT) microcoolers have been fabricated and characterized. They have achieved cooling up to 7 /spl deg/C at 100 /spl deg/C ambient temperature with devices on the order of 50 /spl mu/m in diameter. The cooling power density was also characterized using integrated thin-film heaters; values ranging from 100 to 680 W/cm/sup 2/ were measured. Response time on the order of 20-40 ms has been demonstrated. Calculations show that with an improvement in material properties, hot spots tens of micrometers in diameter with heat fluxes in excess of 1000 W/cm/sup 2/ could be cooled down by 20 /spl deg/C-30 /spl deg/C. Finally we will review some of the more exotic techniques such as thermotunneling and analyze their potential application to chip cooling.  相似文献   

11.
Thermal transistors that electrically control heat flow have attracted growing attention as thermal management devices and phonon logic circuits. Although several thermal transistors are demonstrated, the use of liquid electrolytes may limit the application from the viewpoint of reliability or liquid leakage. Herein, a solid-state thermal transistor that can electrochemically control the heat flow with an on-to-off ratio of the thermal conductivity (κ) of ≈4 without using any liquid is demonstrated. The thermal transistor is a multilayer film composed of an upper electrode, strontium cobaltite (SrCoOx), solid electrolyte, and bottom electrode. An electrochemical redox treatment at 280 °C in air repeatedly modulates the crystal structure and κ of the SrCoOx layer. The fully oxidized perovskite-structured SrCoO3 layer shows a high κ ≈3 .8 W m−1 K−1, whereas the fully reduced defect perovskite-structured SrCoO2 layer shows a low κ ≈ 0.95 W m−1 K−1. The present solid-state electrochemical thermal transistor may become next-generation devices toward future thermal management technology.  相似文献   

12.
High temperature processes are widely used in a variety of existing and emerging industrial and aerospace applications. The thermal properties of high‐temperature materials thus play an important role in controlling the thermal energy, as highlighted by successful applications of thermal barrier coating and aerogels. While thermal transport processes at room and low temperature have witnessed tremendous progress in the past two decades, particularly on the fronts of understanding basic heat transfer properties at the micro‐ and nanoscale, the understanding at high temperature is still at the nascent stage, owing to several unique features at high temperature, such as the dominant Umklapp scattering effect that can render a crystalline material amorphous‐like thermal properties, and the important radiation contribution at high temperature. This lack of systematic understanding, coupled with the challenges in maintaining high‐temperature stability in a large number of materials, has limited the development of materials to meet the thermal transport properties pertaining to several current and emerging high‐temperature applications. This Review is aimed at providing an overview of the basic mechanisms governing thermal transport processes at high temperature, to identify their unique features and challenges, and to explore opportunities in material research for high‐temperature thermal materials.  相似文献   

13.
Thermal conductivity, which measures the ease at which heat passes through a crystalline solid, is controlled by the nature of the chemical bonding and periodicity in the solid. This necessitates an in-depth understanding of the crystal structure and chemical bonding to tailor materials with notable lattice thermal conductivity (κL). Herein, the nature of chemical bonding and its influence on the thermal transport properties (2–523 K) of all-inorganic halide perovskite Cs3Bi2I9 are studied. The κL exhibits an ultralow value of ≈0.20  W m−1K−1 in 30–523 K temperature range. The antibonding states just below the Fermi level in the electronic structure arising from the interaction between bismuth 6s and iodine 5p orbitals, weakens the bond and causes soft elasticity in Cs3Bi2I9. First-principles density functional theory (DFT) calculations reveal highly localized soft optical phonon modes originating from Cs-rattling and dynamic double octahedral distortion of 0D [Bi2I9]3− in Cs3Bi2I9. These low energy nearly flat optical phonons strongly interact with transverse acoustic modes creating an ultrashort phonon lifetime of ≈1 ps. While the presence of extended antibonding states gives rise to soft anharmonic lattice; Cs rattling provides sharp localized optical phonon modes, which altogether result in strong lattice anharmonicity and ultralow κL.  相似文献   

14.
Polymer‐based thermal interface materials (TIMs) with excellent thermal conductivity and electrical resistivity are in high demand in the electronics industry. In the past decade, thermally conductive fillers, such as boron nitride nanosheets (BNNS), were usually incorporated into the polymer‐based TIMs to improve their thermal conductivity for efficient heat management. However, the thermal performance of those composites means that they are still far from practical applications, mainly because of poor control over the 3D conductive network. In the present work, a high thermally conductive BNNS/epoxy composite is fabricated by building a nacre‐mimetic 3D conductive network within an epoxy resin matrix, realized by a unique bidirectional freezing technique. The as‐prepared composite exhibits a high thermal conductivity (6.07 W m?1 K?1) at 15 vol% BNNS loading, outstanding electrical resistivity, and thermal stability, making it attractive to electronic packaging applications. In addition, this research provides a promising strategy to achieve high thermal conductive polymer‐based TIMs by building efficient 3D conductive networks.  相似文献   

15.
Contrary to the conventional belief that the consideration for topological insulators (TIs) as potential thermoelectrics is due to their excellent electrical properties benefiting from the topological surface states, this work shows that the 3D weak TIs, formed by alternating stacks of quantum spin Hall layers and normal insulator (NI) layers, can also be decent thermoelectrics because of their focus on minimum thermal conductivity. The minimum lattice thermal conductivity is experimentally confirmed in Bi14Rh3I9 and theoretically predicted for Bi2TeI at room temperature. It is revealed that the topologically “trivial” NI layers play a surprisingly critical role in hindering phonon propagation. The weak bonding in the NI layers gives rise to significantly low sound velocity, and the localized low‐frequency vibrations of the NI layers cause strong acoustic–optical interactions and lattice anharmonicity. All these features are favorable for the realization of exceptionally low lattice thermal conductivity, and therefore present remarkable opportunities for developing high‐performance thermoelectrics in weak TIs.  相似文献   

16.
Ultilizing boron nitride nanotubes (BNNTs) as fillers, composites are fabricated with poly(methyl methacrylate), polystyrene, poly(vinyl butyral), or poly(ethylene vinyl alcohol) as the matrix and their thermal, electrical, and mechanical properties are evaluated. More than 20‐fold thermal conductivity improvement in BNNT‐containing polymers is obtained, and such composites maintain good electrical insulation. The coefficient of thermal expansion (CTE) of the BNNT‐loaded polymers is dramatically reduced because of interactions between the polymer chains and the nanotubes. Moreover, the composites possess good mechanical properties, as revealed by Vickers microhardness tests. This detailed study indicates that BNNTs are very promising nanofillers for polymeric composites, allowing the simultaneous achievement of high thermal conductivity, low CTE, and high electrical resistance, as required for novel and efficient heat‐releasing materials.  相似文献   

17.
Progress in wide bandgap, III–V material systems based on gallium nitride (GaN) has enabled the realization of high‐power and high‐frequency electronics. Since the highly conductive, 2D electron gas (2DEG) at the aluminum gallium nitride (AlGaN)/GaN interface is based on built‐in polarization fields and is confined to nanoscale thicknesses, its charge carriers exhibit much higher mobilities compared to their doped counterparts. This study shows that such 2DEGs also offer the unique ability to manipulate electrical transport separately from thermal transport, through the examination of fully suspended AlGaN/GaN diaphragms of varied GaN buffer layer thickness. Notably, ≈100 nm thin GaN layers can considerably impede heat flow without electrical transport degradation. These achieve 4× improvement in the thermoelectric figure of merit (zT) over externally doped GaN, with state‐of‐the‐art power factors of 4–7 mW m‐1 K‐2. The remarkable tuning behavior and thermoelectric enhancement, elucidated here for the first time in a polarization‐based heterostructure, are achieved because electrons are at the heterostructured interface, while phonons are within the material system. These results highlight the potential for using 2DEGs in III–V materials for on‐chip thermal sensing and energy harvesting.  相似文献   

18.
Transmission electron microscopy studies show that a PbTe‐BaTe bulk thermoelectric system represents the coexistence of solid solution and nanoscale BaTe precipitates. The observed significant reduction in the thermal conductivity is attributed to the enhanced phonon scattering by the combination of substitutional point defects in the solid solution and the presence of high spatial density of nanoscale precipitates. In order to differentiate the role of nanoscale precipitates and point defects in reducing lattice thermal conductivity, a modified Callaway model is proposed, which highlights the contribution of point defect scattering due to solid solution in addition to that of other relevant microstructural constituents. Calculations indicate that in addition to a 60% reduction in lattice thermal conductivity by nanostructures, point defects are responsible for about 20% more reduction and the remaining reduction is contributed by the collective of dislocation and strain scattering. These results underscore the need for tailoring integrated length‐scales for enhanced heat‐carrying phonon scattering in high performance thermoelectrics.  相似文献   

19.
Owing to the growing demand for highly integrated electronics, anisotropic heat dissipation of thermal management material is a challenging and promising technique. Moreover, to satisfy the needs for advancing flexible and stretchable electronic devices, maintaining high thermal conductivity during the deformation of electronic materials is at issue. Presented here is an effective assembly technique to realize a continuous array of boron nitride (BN) nanosheets on tetrahedral structures, creating 3D thermal paths for anisotropic dissipation integrated with deformable electronics. The tetrahedral structures, with a fancy wavy shaped cross‐section, guarantee flexibility and stretchability, without the degradation of thermal conductivity during the deformation of the composite film. The structured BN layer in the composites induces a high thermal conductivity of 1.15 W m?1 K?1 in the through‐plane and 11.05 W m?1 K?1 in the in‐plane direction at the low BN fraction of 16 wt%, which represent 145% and 83% increases over the randomly mixing method, respectively. Furthermore, this structured BN composite maintains thermal dissipation property with 50% strain of the original length of composite. Various electronic device demonstrations provide exceptional heat dissipation capabilities, including thin film silicon transistor and light‐emitting diode on flexible and stretchable composite, respectively.  相似文献   

20.
Crystallization of an amorphous solid is usually accompanied by a significant change of transport properties, such as an increase in thermal and electrical conductivity. This fact underlines the importance of crystalline order for the transport of charge and heat. Phase‐change materials, however, reveal a remarkably low thermal conductivity in the crystalline state. The small change in this conductivity upon crystallization points to unique lattice properties. The present investigation reveals that the thermal properties of the amorphous and crystalline state of phase‐change materials show remarkable differences such as higher thermal displacements and a more pronounced anharmonic behavior in the crystalline phase. These findings are related to the change of bonding upon crystallization, which leads to an increase of the sound velocity and a softening of the optical phonon modes at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号