首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost‐effective microwave‐assisted method. In order to achieve high energy and power densities, a high‐voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high‐voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g?1 and high energy density of 77.8 Wh kg?1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.  相似文献   

2.
Carbon nanotubes (CNTs) are a promising material for use as a flexible electrode in wearable energy devices due to their electrical conductivity, soft mechanical properties, electrochemical activity, and large surface area. However, their electrical resistance is higher than that of metals, and deformations such as stretching can lead to deterioration of electrical performances. To address these issues, here a novel stretchable electrode based on laterally combed CNT networks is presented. The increased percolation between combed CNTs provides a high electrical conductivity even under mechanical deformations. Additional nickel electroplating and serpentine electrode designs increase conductivity and deformability further. The resulting stretchable electrode exhibits an excellent sheet resistance, which is comparable to conventional metal film electrodes. The resistance change is minimal even when stretched by ≈100%. Such high conductivity and deformability in addition to intrinsic electrochemically active property of CNTs enable high performance stretchable energy harvesting (wireless charging coil and triboelectric generator) and storage (lithium ion battery and supercapacitor) devices. Monolithic integration of these devices forms a wearable energy supply system, successfully demonstrating its potential as a novel soft power supply module for wearable electronics.  相似文献   

3.
A novel and scalable synthesis approach to produce hierarchically aligned porous carbon nanotube arrays (PCNTAs) on flexible carbon fibers (CFs) is developed. The PCNTAs are obtained by catalytic conversion of ethanol on ZnO nanorod arrays and then reduction‐evaporation of ZnO nanorods, resulting in uniform and controllable wall thicknesses of the final PCNTAs. The 3D arrangement, the diameters, and the lengths of the PCNTAs can be tuned by adjusting the synthesis protocols of the ZnO nanorod arrays. The PCNTAs@CFs exhibit a high specific capacitance of 182 F g?1 at 40 A g?1 (188 F g?1 at 20 A g?1) in 6 m KOH. The symmetric supercapacitor shows an excellent cycling stability with only 0.0016% loss per cycle after 10 000 continuous cycles at the current density of 12 A g?1. These excellent electrochemical performances are ascribed to the unique structural design of hierarchical PCNTAs, which provide not only appropriate channels for enhanced electronic and ionic transport but also increased surface area for accessing more electrolyte ions. The structural design and the synthesis approach are general and can be extended to synthesizing a broad range of materials systems.  相似文献   

4.
Over the past decade, wood‐derived materials have attracted enormous interest for both fundamental research and practical applications in various functional devices. In addition to being renewable, environmentally benign, naturally abundant, and biodegradable, wood‐derived materials have several unique advantages, including hierarchically porous structures, excellent mechanical flexibility and integrity, and tunable multifunctionality, making them ideally suited for efficient energy storage and conversion. In this article, the latest advances in the development of wood‐derived materials are discussed for electrochemical energy storage systems and devices (e.g., supercapacitors and rechargeable batteries), highlighting their micro/nanostructures, strategies for tailoring the structures and morphologies, as well as their impact on electrochemical performance (energy and power density and long‐term durability). Furthermore, the scientific and technical challenges, together with new directions of future research in this exciting field, are also outlined for electrochemical energy storage applications.  相似文献   

5.
Solid-state energy storage devices (SSESDs) are believed to significantly improve safety, long-term electrochemical/thermal stability, and energy/power density as well as reduce packaging demands, showing the huge application potential in large-scale energy storage. Nevertheless, some key issues like low ionic conductivities, poor interface contact, and dendrites growth limit the practical application of SSESDs. In recent years, MXenes for SSESDs have received reassuring advances on account of unique parameters. Nevertheless, overall reviews about the subject are seldom. In this review, current advances of MXenes and their derivatives in solid-state Li–metal, Li-ion, Li–I/S, Na-ion, Zn–air, Zn–metal batteries, and supercapacitors in cathode/anode optimization, interface medication, and electrolyte fillers, etc., are comprehensively reviewed. First of all, essential principles of MXenes are shown, such as precursors, etching/delamination strategies, as well as superior properties for energy storage systems. Meanwhile, the classification and evaluation parameters of solid-state electrolytes are summarized. Subsequently, the application, modification mechanism, and design strategy of MXenes for boosting electrochemical behaviors of SSESDs are systematically reviewed and discussed. At last, perspectives and challenges about the future construction strategies of MXenes for SSESDs are recommended. This review shall assist scientists design and build advanced SSESDs with superior energy density along with safety.  相似文献   

6.
Materials with hierarchical porosity and structures have been heavily involved in newly developed energy storage and conversion systems. Because of meticulous design and ingenious hierarchical structuration of porosities through the mimicking of natural systems, hierarchically structured porous materials can provide large surface areas for reaction, interfacial transport, or dispersion of active sites at different length scales of pores and shorten diffusion paths or reduce diffusion effect. By the incorporation of macroporosity in materials, light harvesting can be enhanced, showing the importance of macrochannels in light related systems such as photocatalysis and photovoltaics. A state‐of‐the‐art review of the applications of hierarchically structured porous materials in energy conversion and storage is presented. Their involvement in energy conversion such as in photosynthesis, photocatalytic H2 production, photocatalysis, or in dye sensitized solar cells (DSSCs) and fuel cells (FCs) is discussed. Energy storage technologies such as Li‐ions batteries, supercapacitors, hydrogen storage, and solar thermal storage developed based on hierarchically porous materials are then discussed. The links between the hierarchically porous structures and their performances in energy conversion and storage presented can promote the design of the novel structures with advanced properties.  相似文献   

7.
Renewable and environmentally friendly biomass‐based carbon electrode materials naturally possess fast ion transport, high adsorption, and excellent chemical stability for high‐performance energy‐storage devices. However, intelligently building the effectively biomass‐transferred carbon materials for the requirement of high energy density is still a big challenge to date. Here, a hierarchically divacancy defect building platform is reported for effectively biomass‐transferred and highly interconnected 3D dual‐activated porous carbon fibers (DACFs) based on the internal?external dual‐activation function of the pre‐embedded KOH and CO2 molecular. This uniquely interconnected frameworks not only fully provide the abundant active sites for ion interaction, but also efficiently guarantee the substantial accommodation for ion storage. Based on this, the as‐prepared DACFs‐based supercapacitors deliver a high energy density of 61.3 Wh kg?1 at a power density of 875 W kg?1 in the EMIMBF4 ionic liquid. This work not only provides a simple and efficient technique to enhance the energy density of carbon materials, but also probably promotes its additional application in environmental remediation.  相似文献   

8.
9.
Water-in-salt electrolytes (WISEs) have attracted widespread attention due to their non-flammability, environmental friendliness, and wider electrochemical stability window than conventional dilute aqueous electrolytes. When applied in the electrochemical energy storage (EES) devices, WISEs can offer many advantages such as high-level safety, manufacturing efficiency, as well as, superior electrochemical performances. Therefore, there is an urgent need for a timely and comprehensive summary of WISEs and their EES applications. In this review, the physicochemical and electrochemical properties of the WISEs are first introduced. Then, the research progresses of the WISEs using different metal salts and their analogues are summarized. Next, the current research progresses of WISEs applied in different EES devices (e.g., batteries and supercapacitors) as well as the insights into challenging and future perspectives are systematically discussed.  相似文献   

10.
Structural energy storage materials refer to a broad category of multifunctional materials which can simultaneously provide load bearing and energy storage to achieve weight reduction in weight‐sensitive applications. Reliable and satisfactory performance in each function, load bearing or energy storage, requires peculiar material design with potential trade‐offs between them. Here, the trade‐offs between functionalities in an emerging class of nanomaterials, carbon nanofibers (CNFs), are unraveled. The CNFs are fabricated by emulsion and coaxial electrospinning and activated by KOH at different activation conditions. The effect of activation on supercapacitor performance is analyzed using two electrode test cells with aqueous electrolyte. Porous CNFs show promising energy storage capacity (191.3 F g?1 and excellent cyclic stability) and load‐bearing capability (σf > 0.55 ± 0.15 GPa and E > 27.4 ± 2.6 GPa). While activation enhances surface area and capacitance, it introduces flaws in the material, such as nanopores, reducing mechanical properties. It is found that moderate activation can lead to dramatic improvement in capacitance (by >300%), at a rather moderate loss in strength (<17%). The gain in specific surface area and capacitance in CNFs is many times those observed in bulk carbon structures, such as carbon fibers, indicating that activation is mainly effective near the free surfaces and for low‐dimensional materials.  相似文献   

11.
Graphene scroll is an emerging 1D tubular form of graphitic carbon that has potential applications in electrochemical energy storage. However, it still remains a challenge to composite graphene scrolls with other nanomaterials for building advanced electrode configuration with fast and durable lithium storage properties. Here, a transition‐metal‐oxide‐based hierarchically ordered 3D porous electrode is designed based on assembling 1D core–sheath MnO@N‐doped graphene scrolls with 2D N‐doped graphene ribbons. In the resulting architecture, porous MnO nanowires confined in tubular graphene scrolls are mechanically isolated but electronically well‐connected, while the interwoven graphene ribbons offer continuous conductive paths for electron transfer in all directions. Moreover, the elastic graphene scrolls together with enough internal voids are able to accommodate the volume expansion of the enclosed MnO. Because of these merits, the as‐built electrode manifests ultrahigh rate capability (349 mAh g?1 at 8.0 A g?1; 205 mAh g?1 at 15.0 A g?1) and robust cycling stability (812 mAh g?1 remaining after 1000 cycles at 2.0 A g?1) and is the most efficient MnO‐based anode ever reported for lithium‐ion batteries. This unique multidimensional and hierarchically ordered structure design is believed to hold great potential in generalizable synthesis of graphene scrolls composited with oxide nanowires for mutifuctional energy storage.  相似文献   

12.
The ever-increasing demands for high energy density electronics have motivated research on exploring new types of electrode materials featuring mechanical flexibility and electrical storage capability. Of these, polymeric carbon nitride (PCN) has been increasingly studied in regard to electrical energy storage (EES) because of its abundant pyridinic N content, which is beneficial for enhancing electrochemical performance. However, state-of-the-art PCN-based electrode materials for EES are still far from industrial requirements. Herein, the current status of PCN-based materials in batteries and supercapacitors (SCs) is primarily discussed. A particular emphasis is placed on the PCN processing into composite electrode materials, including the defect engineering of pristine PCN and its coupling with other conductive materials to develop heterojunction nanostructures, which is essential for developing highly efficient electrode materials. Moreover, the direct pyrolysis of PCN into N-doped graphene with a tunable N content is introduced and achieves remarkable energy storage performance with superior electronic conductivity. Furthermore, the energy storage mechanisms for batteries and SCs are also highlighted to reveal structure–performance relationship. Finally, this comprehensive review outlines the remaining challenges and strategies for future improvements in PCN-based materials in this emerging field. This review will provide inspiration on developing future PCN-based materials for EES.  相似文献   

13.
14.
The intrinsic properties of nanoscale active materials are always excellent for energy storage devices. However, the accompanying problems of ion/electron transport limitation and active materials shedding of the whole electrodes, especially for high‐loaded electrode composed of nanoparticles with high specific surface area, bring down their comprehensive performance for practical applications. Here, this problem is solved with the as proposed “phase inversion” method, which allows fabrication of tricontinuous structured electrodes via a simple, convenient, low cost, and scalable process. During this process, the binder networks, electron paths, and ion channels can be separately interconnected, which simultaneously achieves excellent binding strength and ion/electron conductivity. This is verified by constructing electrodes with sulfur/carbon (S/C) and Li3V2(PO4)3/C (LVP/C) nanoparticles, separately delivering 869 mA h g?1 at 1 C in Li–S batteries and 100 mA h g?1 at 30 C in Li–LVP batteries, increasing by 26% and 66% compared with the traditional directly drying ones. Electrodes with 7 mg cm?2 sulfur and 11 mg cm?2 LVP can also be easily coated on aluminum foil, with excellent cycling stability. Phase inversion, as a universal method to achieve high‐performance energy storage devices, might open a new area in the development of nanoparticle‐based active materials.  相似文献   

15.
16.
17.
Electroactive materials (especially pseudocapacitive materials) are generally in the form of ultrathin conformal coating in supercapacitor electrodes based on nanostructured current collectors; thus, the resultant low mass loading of electroactive materials largely limits the applications of nanostructured current collectors. Here, supercapacitor electrodes with nickel nanorod arrays as nanostructured current collectors and MnO2 as electroactive materials are fabricated to study the role of nanostructured current collectors in determining the energy storage capability when electroactive materials are in thick layer rather than ultrathin conformal coating. Electrochemical analysis reveals that Ni nanorods could create numerous electrical conductive tunnels in the thick‐layer electrodes to dramatically alleviate the contact resistance at the electroactive‐material/current‐collector interface. With 1 µm thick MnO2 layer, the Ni nanorods based electrodes have much higher areal capacitance than those with Ni foils as current collectors, which is more than six times of that with the same MnO2 mass loading or more than 18 times of that with the same 1 µm thick MnO2 layer. Moreover, better rate capability and higher structural stability is maintained in Ni nanorods based electrodes even with 3 µm thick MnO2 layer. These results open up new opportunities for nanostructured current collectors to construct supercapacitors with superior energy storage capability.  相似文献   

18.
In energy storage materials, large surface areas and oriented structures are key architecture design features for improving performance through enhanced electrolyte access and efficient electron conduction pathways. Layered hydroxides provide a tunable materials platform with opportunities for achieving such nanostructures via bottom‐up syntheses. These nanostructures, however, can degrade in the presence of the alkaline electrolytes required for their redox‐based energy storage. A layered Co(OH)2–organic hybrid material that forms a hierarchical structure consisting of micrometer‐long, 30 nm diameter tubes with concentric curved layers of Co(OH)2 and 1‐pyrenebutyric acid is reported. The nanotubular structure offers high surface area as well as macroscopic orientation perpendicular to the substrate for efficient electron transfer. Using a comparison with flat films of the same composition, it is demonstrated that the superior performance of the nanotubular films is the result of a large accessible surface area for redox activity. It is found that the organic molecules used to template nanotubular growth also impart stability to the hybrid when present in the alkaline environments necessary for redox function.  相似文献   

19.
Manganese dioxide (MnO2) materials have received much attention as promising pseudocapacitive materials owing to their high theoretical capacitance and natural abundance. Unfortunately, the charge storage performance of MnO2 is usually limited to commercially available mass loading electrodes because of the significantly lower electron and ion migration kinetics in thick electrodes. Here, an alternatively assembled 2D layered material consisting of exfoliated MnO2 nanosheets and nitrogen-doped carbon layers for ultrahigh-mass-loading supercapacitors without sacrificing energy storage performance is reported. Layered birnessite-type MnO2 is efficiently exfoliated and intercalated by a carbon precursor of dopamine using a fluid dynamic-induced process, resulting in MnO2/nitrogen-doped carbon (MnO2/C) materials after self-polymerization and carbonization. The alternatively stacked and interlayer-expanded structure of MnO2/C enables fast and efficient electron and ion transfer in a thick electrode. The resulting MnO2/C electrode shows outstanding electrochemical performance at an ultrahigh mass loading of 19.7 mg cm−2, high gravimetric and areal capacitances of 480.3 F g−1 and 9.4 F cm−2 at 0.5 mA cm−2, and rapid charge/discharge capability of 70% capacitance retention at 40 mA cm−2. Furthermore, asymmetric supercapacitor based on high-mass-loading MnO2/C can deliver an extremely high energy of 64.2 Wh kg−1 at a power density of 18.8 W kg−1 in an aqueous electrolyte.  相似文献   

20.
The sea provides a large variety of seaweeds that, because of their chemical composition, are fantastic precursors of nanotextured carbons. The carbons are obtained by the simple pyrolysis of the seaweeds under a nitrogen atmosphere between 600 and 900 °C, followed by rinsing the product in slightly acidic water. Depending on the origin of the seaweed and on the pyrolysis conditions, the synthesis may be oriented to give an oxygen‐enriched carbon or to give a tuned micro/mesoporous carbon. The samples with a rich oxygenated surface functionality are excellent as supercapacitor electrodes in an aqueous medium whereas the perfectly tuned porous carbons are directly applicable for organic media. In both cases, the specific surface area of the attained carbons does not exceed 1300 m2 g−1, which results in high‐density materials. As a consequence, the volumetric capacitance is very high, making these materials more interesting than activated carbons from the point of view of developing small and compact electric power sources. Such versatile carbons, obtained by a simple, ecological, and cheap process, could be well used for environment remediation such as water and air treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号