首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MurA (UDP-GlcNAc enolpyruvyl transferase), the first enzyme in bacterial peptidoglycan biosynthesis, catalyzes the enolpyruvyl transfer from phosphoenolpyruvate (PEP) to the 3'-OH of UDP-GlcNAc by an addition-elimination mechanism that proceeds through a tetrahedral ketal intermediate. The crystal structure of the Cys115-to-Ala (C115A) mutant of Escherichia coli MurA complexed with a fluoro analogue of the tetrahedral intermediate revealed the absolute configuration of the adduct and the stereochemical course of the reaction. The fluorinated adduct was generated in a preincubation of wild-type MurA with (Z)-3-fluorophosphoenolpyruvate (FPEP) and UDP-GlcNAc and purified after enzyme denaturation. The fluorine substituent stabilizes the tetrahedral intermediate toward decomposition by a factor of 10(4)-10(6), facilitating manipulation of the adduct. The C115A mutant of MurA was utilized to avoid the microheterogeneity that arises in the wild-type MurA from the attack of Cys115 on C-2 of FPEP in competition with the formation of the fluorinated adduct. The crystal structure of the complex was determined to 2.8 A resolution, and the absolute configuration at C-2 of the adduct was found to be 2R. Thus, addition of the 3'-OH of UDP-GlcNAc is to the 2-si face of FPEP, corresponding to the 2-re face of PEP. Given the previous observation that, in D2O, the addition of D+ to C-3 of PEP proceeds from the 2-si face [Kim, D. H., Lees, W. J., and Walsh, C. T. (1995) J. Am. Chem. Soc. 117, 6380-6381], the addition across the double bond of PEP is anti. Also, because the overall stereochemical course has been shown to be either anti/syn or syn/anti [Lees, W. J., and Walsh, C. T. (1995) J. Am. Chem. Soc. 117, 7329-7337], it now follows that the stereochemistry of elimination of H+ from C-3 and Pi from C-2 of the tetrahedral intermediate of the reaction is syn.  相似文献   

2.
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) to form EPSP, a precursor for the aromatic amino acids. This paper examines a recent claim [Studelska, D. R., McDowell, L. M., Espe, M. P., Klug, C. A., and Schaefer, J. (1997) Biochemistry 36, 15555-15560] that the mechanism of EPSP synthase involves two covalent enzyme-intermediates, in complete contrast to a large body of literature that has already proven the involvement of a single noncovalent intermediate. The evidence in the paper of Studelska et al. is examined closely, and unequivocal proof is provided that those authors' NMR assignments to covalent structures are in error, and that in fact the species they observed were simply the product EPSP and a side-product EPSP ketal. Since those authors used rotational-echo double-resonance (REDOR) solid-state NMR to measure intermolecular and intramolecular distances in the proposed covalent intermediates, we have used REDOR to measure the same distances in enzyme-free and enzyme-bound preparations of purified EPSP, and enzyme-free preparations of purified EPSP ketal. The distance between the shikimate ring phosphorus atom and C8 in enzyme-free EPSP is 6.6 +/- 0.1 A, which lengthens to 7.4 +/- 0.1 A in the presence of the enzyme, and in enzyme-free EPSP ketal is 5.6 +/- 0.1 A. These are entirely consistent with those measured by Studelska et al., which were 7.5 +/- 0.5 A for a putative enzyme-enolpyruvyl species and 6.1 +/- 0.3 A for a putative enzyme-ketal species.  相似文献   

3.
EPSP (5-enolpyruvylshikimate-3-phosphate) synthase catalyzes condensation of shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) to form EPSP, a precursor to the aromatic amino acids. S3P and [2-13C]POP were bound to mutant or wild type E. coli forms of the enzyme prior to lyophilization. CPMAS-echo and rotational-echo double-resonance (REDOR) NMR experiments, employing a slow catalytic EPSP synthase mutant and a long prelyophilization incubation interval, allowed our observation of the gradual formation of a strong 31P-13C coupling consistent with the well characterized tetrahedral intermediate. However, after shorter low temperature incubation intervals of substrates with mutant or wild-type enzymes, carbon CPMAS-echo NMR spectra showed the 13C label at 155 ppm, consistent with sp2 geometry of this carbon. REDOR revealed that the phosphorus of PEP was cleaved. However, phosphorus at a distance of 7.5 A was observed, due to the phosphate of a nearby bound S3P. Heating the sample allowed the reaction to progress, as shown by the diminution of the 155 ppm peak and growth of a peak at 108 ppm. The sp3 geometry implied by the 108 ppm peak strongly suggested formation of a S3P-PEP condensation product. REDOR indicated that phosphorus was still distant, but now only 6.1 (wild type) or 5.9 A (mutant) distant. We think that the early intermediates with peaks at 155 and 108 ppm are covalently bound to the enzyme. We also think that the tetrahedral intermediate that we observed was formed after product was generated.  相似文献   

4.
A series of 2H- and 13C-labeled glutamates were used as substrates for coenzyme B12-dependent glutamate mutase, which equilibrates (S)-glutamate with (2S,3S)-3-methylaspartate. These compounds contained the isotopes at C-2, C-3, or C-4 of the carbon chain: [2-2H], [3,3-2H2], [4,4-2H2], [2,3,3,4,4-2H5], [2-13C], [3-13C], and [4-13C]glutamate. Each reaction was monitored by electron paramagnetic resonance (EPR) spectroscopy and revealed a similar signal characterized by g'xy = 2.1, g'z = 1.985, and A' = 5.0 mT. The interpretation of the spectral data was aided by simulations which gave close agreement with experiment. This approach underpinned the idea of the formation of a radical pair, consisting of cob(II)alamin interacting with an organic radical at a distance of 6.6 +/- 0.9 A. Comparison of the hyperfine couplings observed with unlabeled glutamate with those from the labeled glutamates enabled a principal contributor to the radical pair to be identified as the 4-glutamyl radical. These findings support the currently accepted mechanism for the glutamate mutase reaction, i.e., the process is initiated through hydrogen atom abstraction from C-4 of glutamate by the 5'-deoxyadenosyl radical, which is derived by homolysis of the Co-C sigma-bond of coenzyme B12.  相似文献   

5.
Transfer of 3H from D-gluconic acid, specifically labelled with 3H at C-2 or C-3 and 14C at C-1, C-2, or C-3, 4, to L(+)-tartaric acid was examined in leaves and berries of Vitis labrusca cv Delaware and in leaves of Parthenocissus quinquefolia. 3H located at C-3 of D-gluconic acid was highly conserved in this transfer, yielding a 3H/14C ratio between 3.3 and 14 in the light and between 11 and 22 in the dark. These experiments strongly suggest that a portion of the 3H present in L(+)-tartaric acid may have been transferred from D-gluconic acid to L(+)-tartaric acid, possibly via NADP[3H] through a redox process involving reduction of L-xylo-2-hexulosonate (2-keto-L-idonate). Both [3H]-tartaric acid and [14C]tartaric acid synthesized in grape leaves from D-[3-3H, 2-14C]gluconic acid, or [3-3H, 3,4-14C]gluconic acid were characterized as L(+)-chiral form exclusively, the naturally occurring from of tartaric acid.  相似文献   

6.
Ribonucleotide reductases (RNRs) catalyze the rate-determining step in DNA biosynthesis: conversion of nucleotides to deoxynucleotides. The RNR from Lactobacillus leichmannii utilizes adenosylcobalamin (AdoCbl) as a cofactor and, in addition to nucleotide reduction, catalyzes the exchange of tritium from [5'-3H]-AdoCbl with solvent. Examination of this exchange reaction offers a unique opportunity to investigate the early stages in the nucleotide reduction process [Licht S. S., Gerfen, G. J., and Stubbe, J. (1996) Science 271, 477-481]. The kinetics of and requirements for this exchange reaction have been examined in detail. The turnover number for 3H washout is 0.3 s-1, and it requires an allosteric effector dGTP (Km = 17 +/- 3 microM), AdoCbl (Km = 60 +/- 9 microM) and no external reductant. The effects of active-site mutants of RTPR (C119S, C419S, C731S, C736S, and C408S) on the rate of the exchange reaction have been determined, and only C408 is essential for this process. The exchange reaction has previously been monitored by stopped-flow UV-vis spectroscopy, and cob(II)alamin was shown to be formed with a rate constant of 40 s-1 [Tamao, Y., and Blakley, R. L. (1973) Biochemistry 12, 24-34]. This rate constant has now been measured in D2O, with [5'-2H2]-AdoCbl in H2O, and with [5'-2H2]-AdoCbl in D2O. A comparison of these results with those for AdoCbl in H2O revealed kH/kD of 1.6, 1.7, and 2.7, respectively. The absolute amounts of cob(II)alamin generated with [5'-2H2]-AdoCbl in D2O in comparison with AdoCbl in H2O reveal twice as much cob(II)alamin in the former case. Similar transient kinetic studies with C408S RTPR reveal no cob(II)alamin formation. These experiments allow proposal of a minimal mechanism for this exchange reaction in which RNR catalyzes homolysis of the carbon-cobalt bond in a concerted fashion, to generate a thiyl radical on C408, cob(II)alamin, and 5'-deoxyadenosine.  相似文献   

7.
myo-Inositol-1-phosphate synthase (EC 5.5.1.4) from rat testis, Acer pseudoplatanus L. cell culture and Oryza sativa L. cell culture, converted D-[5-3H]glucose 6-phosphate to myo-[2-3H]inositol 1-phosphate at rates ranging from 0.21 to 0.48 that of unlabeled substrate. D-[3-3H]- and D-[4-3H]glucose 6-phosphate were converted at approximately the same rate as that of unlabeled substrate. In the case of testis enzyme, storage as a frozen solution further lowered the rate with D-[5-3H]glucose 6-phosphate as substrate. When the reaction was run in [3H]water, no 3H appeared in myo-inositol 1-phosphate but a small amount was recovered in substrate isolated from the final reaction mixture. These data support the involvement of carbon 5 of D-glucose 6-phosphate in the mechanism proposed for this conversion.  相似文献   

8.
GTP cyclohydrolase I catalyzes a ring expansion affording dihydroneopterin triphosphate from GTP. [1',2',3',4',5'-13C5, 2'-2H1]GTP was prepared enzymatically from [U-13C6]glucose for use as enzyme substrate. Multinuclear NMR experiments showed that the reaction catalyzed by GTP cyclohydrolase I involves the release of a proton from C-2' of GTP that is exchanged with the bulk solvent. Subsequently, a proton is reintroduced stereospecifically from the bulk solvent. This is in line with an Amadori rearrangement mechanism. The proton introduced from solvent occupies the pro-7R position in the enzyme product. The data also confirm that the reaction catalyzed by pyruvoyltetrahydropterin synthase results in the incorporation of solvent protons into positions C-6 and C-3' of the enzyme product. On the other hand, the reaction catalyzed by sepiapterin reductase does not involve any detectable incorporation of solvent protons into tetrahydrobiopterin.  相似文献   

9.
The anti-epileptic, anti-hyperalgesic, and anxiolytic agent gabapentin (1-(aminomethyl)-cyclohexane acetic acid or Neurontin) has previously been shown to bind with high affinity to the alpha2delta subunit of voltage-dependent calcium channels (Gee, N. S. , Brown, J. P., Dissanayake, V. U. K., Offord, J., Thurlow, R., and Woodruff, G.N. (1996) J. Biol. Chem. 271, 5768-5776). We report here the cloning, sequencing, and deletion mutagenesis of the alpha2delta subunit from porcine brain. The deduced protein sequence has a 95.9 and 98.2% identity to the rat and human neuronal alpha2 delta sequences, respectively. [3H]Gabapentin binds with a KD of 37.5 +/- 10.4 nM to membranes prepared from COS-7 cells transfected with wild-type porcine alpha2 delta cDNA. Six deletion mutants (B-G) that lack the delta polypeptide, together with varying amounts of the alpha2 component, failed to bind [3H]gabapentin. C-terminal deletion mutagenesis of the delta polypeptide identified a segment (residues 960-994) required for correct assembly of the [3H]gabapentin binding pocket. Mutant L, which lacks the putative membrane anchor in the delta sequence, was found in both membrane-associated and soluble secreted forms. The soluble form was not proteolytically cleaved into separate alpha2 and delta chains but still retained a high affinity (KD = 30.7 +/- 8.1 nM) for [3H]gabapentin. The production of a soluble alpha2delta mutant supports the single transmembrane model of the alpha2 delta subunit and is an important step toward the large-scale recombinant expression of the protein.  相似文献   

10.
In this article the structural analysis of the persistently bound form of the carcinogen N-acetyl-2-aminofluorene (AAF) to rat liver DNA in vivo is described. This compound appears to result from the formation of a covalent bond between carbon-3 of the aromatic ring and the amino group of guanine. Experimental evidence from three different approaches had led to the identification of the structure of the persistently DNA-bound AAF moiety. First, [3-3H, 9-14C]N-acetoxy-AAF was reacted with DNA in vitro. As reported previously, a minor product was isolated from enzymatic digests of the reacted DNA, which had chemical and chromatographic properties identical to those of the persistent--AAF moiety in DNA in vivo. The ratio 3H/14C of this product had diminished to the same extent as 3-CH3S-AAF resulting from the reaction of methionine with [o-3H, 9-14C]N-acetoxy-AAF. Secondly, reaction of [9-14C]N-acetoxy-AAF with DNA, which was tritiated in the C-8 positions of the purines, did not result in removal of tritium in the persistent fraction obtained after acid hydrolysis, thus excluding substitution at C-8 and N-7 of guanine. Finally , by reacting N-OSO3-K-AAF with deoxyguanosine in dimethylsulfoxide-triethylamine, a compound could be isolated, which was identified as 3-(deoxyguanosin-N2-yl)-AAF based on its NMR spectrum and on the mass spectrum of the corresponding guanine derivative obtained after removing deoxyribose by acid hydrolysis. This compound appeared to be identical with the persistently bound form present in DNA hydrolysates from rat liver after injection of [2'-3H]N-hydroxy-AAF.  相似文献   

11.
We have devised a novel procedure, employing Chaps rather than Triton [Costello B., Chadwick C., Saito A., Chu A., Maurer A., Fleischer S. J Cell Biol 1986; 103: 741-753], for obtaining vesiculated derivatives of the junctional face membrane (JFM) domain of isolated terminal cisternae (TC) from fast skeletal muscle of the rabbit. Enriched JFM is minimally contaminated with junctional transverse tubules. The characteristic ultrastructural features and the most essential features of TC function relating to this membrane domain-i.e. both the Ca(2+)-release system and the Ca2+ and calmodulin (CaM)-dependent protein kinase (CaM I PK) system-appear to be retained in enriched JFM. We show that our isolation procedure, yielding up to a 2.5-fold enrichment in ryanodine receptor (RyR) protein and in the maximum number of high affinity [3H]-ryanodine binding sites, does not alter the assembly for integral proteins associated with the receptor in its native membrane environment, i.e. FKBP-12, triadin and the structurally related protein junction [Jones L.R., Zhang L., Sanborn K., Jorgensen A., Kelley J. J Biol Chem 1995; 270: 30787-30796] having, in common, the property to bind calsequestrin (CS) in overlays in the presence of EGTA. The substrate specificity of endogenous CaM I PK is also the same as that of parent TC vesicles. Phosphorylation of mainly triadin and of a high M(r) polypeptide, and not of the RyR, is the most remarkable common property. Retention of peripheral proteins, like CS and histidine-rich Ca(2+)-binding protein, although not that endogenous CaM, and of a unique set of CaM-binding proteins, unlike that of junctional SR-specific integral proteins, is shown to be influenced by the concentration of Ca2+ during incubation of TC vesicles with Chaps. Characterization of RyR functional behaviour with [3H]-ryanodine has indicated extensive similarities between the enriched JFM and parent TC vessicles, as far as the characteristic bell shaped Ca(2+)-dependence of [3H]-ryanodine binding and the dose-dependent sensitization to Ca2+ by caffeine, reflecting the inherent properties of SR Ca(2+)-release channel, as well as concerning the stimulation of [3H]-ryanodine binding by increasing concentrations of KCl. Stabilizing the RyR in a maximally active state by optimizing concentrations of KCl (1 M), at also optimal concentrations of Ca2+ (pCa 4), rendered the receptor less sensitive to inhibition by 1 microM CaM, to a greater extent in the case of enriched JFM. That was not accounted for by any significant difference in the IC50 concentrations of CaM varying between 40 nM to approximately 80 nM, at low-intermediate and at high KCl concentrations, respectively. Additional results with enriched JFM using doxorubicin, a pharmacological Ca2+ channel allosteric modifier, strengthen the hypothesis that the conformational state at which RyR is stabilized, according to the experimental assay conditions for [3H]-ryanodine binding, directly influences CaM-sensitivity.  相似文献   

12.
In this report, we demonstrate the ability of the cellular thiol glutathione to modulate the ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Reduced glutathione (GSH) inhibited Ca2+-stimulated [3H]ryanodine binding to the sarcoplasmic reticulum and inhibited the single-channel gating activity of the reconstituted Ca2+ release channel. The effects of GSH on both the [3H]ryanodine binding and single-channel measurements were dose-dependent, exhibiting an IC50 of approximately 2.4 mM in binding experiments. Scatchard analysis demonstrated that GSH decreased the binding affinity of ryanodine for its receptor (increased Kd) and lowered the maximal binding occupancy (Bmax). In addition, GSH did not modify the Ca2+ dependence of [3H]ryanodine binding. In single-channel experiments, GSH (5-10 mM), added to the cis side of the bilayer lipid membrane, lowered the open probability (Po) of a Ca2+ (50 microM)-stimulated Ca2+ channel without modifying the single-channel conductance. Subsequent perfusion of the cis chamber with an identical buffer, containing 50 microM Ca2+ without GSH, re-established Ca2+-stimulated channel gating. GSH did not inhibit channel activity when added to the trans side of the bilayer lipid membrane. Similar to GSH, the thiol-reducing agents dithiothreitol and beta-mercaptoethanol also inhibited high affinity [3H]ryanodine binding to sarcoplasmic reticulum membranes. In contrast to GSH, glutathione disulfide (GSSG) was a potent stimulator of high affinity [3H]ryanodine binding and it also stimulated the activity of the reconstituted single Ca2+ release channel. These results provide direct evidence that glutathione interacts with reactive thiols associated with the Ca2+ release channel/ryanodine receptor complex, which are located on the cytoplasmic face of the SR, and support previous observations (Liu, G, Abramson, J. J., Zable, A. C., and Pessah, I. N. (1994) Mol. Pharmacol. 45, 189-200) that reactive thiols may be involved in the gating of the Ca2+ release channel.  相似文献   

13.
The kinetic mechanism of rabbit muscle glycogen synthase I was investigated by determining isotope-exchange rates at chemical equilibrium between uridine diphosphoglucose (UDPG) and glycogen and between UDPG and uridine 5'-diphosphate (UDP). The rates were followed simultaneously by use of UDPG labeled with 14C in the glucose moiety and with 3H in the uracil group. They were found to be independent of the concentrations of glycogen and the UDPG-UDP pair, averaging 6 X 10(-9) mol min-1 mg-1, with a ratio of UDPG-glycogen exchange to UDPG-UDP exchange of 0.85-0.95. The conclusion is that glycogen synthase has a rapid equilibrium random bi bi mechanism. The previously reported slow activation of glycogen-free synthase in the presence of glycogen was examined kinetically. The activation rate appears to be independent of glycogen concentration over a wide range, while the maximum activation is related to the third or fourth root of the glycogen concentration. This suggest that the slow bimolecular reaction mechanism proposed for human polymorphonuclear leucocyte glycogen synthase I [S?lling, H., & Esmann, V. (1977) Eur. J. Biochem. 81, 129] does not apply to rabbit muscle synthase I. The rate of exchange of glycogen molecules in the complex between glycogen and rabbit muscle synthase I under conditions where the enzyme is catalytically active was estimated by a novel method. The enzyme-glycogen complex was treated with [glucose-14C]UDPG and glycogen of different molecular weight. The distribution of isotope between the two forms of glycogen was determined after their separation by agarose gel chromatography. A rate constant of 0.3 min-1 was estimated for the exchange. It can be calculated, on the basis of the specific activity of the enzyme (20 mumol min-1 mg-1) and its action pattern, that hundreds of individual chains in the glycogen molecule must be available to the enzyme during the average lifetime of the complex. A mechanism is proposed for this process.  相似文献   

14.
Oxidation of 1-octene by cytochrome P-450 results concurrently in formation of 1,2-oxidooctane and in N-alkylation by the catalytically activated olefin of the prosthetic heme group. The stereochemistry of trans-1-[1-2H]octene is retained during both transformations. This alkylation stereochemistry requires addition of the pyrrole nitrogen and the activated oxygen to the same side of the double bond, a reaction geometry opposite to that expected if the heme were alkylated by the epoxide metabolite. Stereochemical analysis shows that the S enantiomer of the epoxide is formed in slight excess over the R enantiomer by oxidation of the re and si faces, respectively, of the olefin, but that heme alkylation only occurs during oxidation of the re face. The stereochemical specificity of epoxidation and heme alkylation requires that (a) the two processes proceed by independent (probably concerted) mechanisms, or (b) the two processes diverge from a common acyclic intermediate.  相似文献   

15.
CME--what works?     
AIM: To compare the inhibitory effects of 3 opioid receptor agonists, (D-Ala2, NMe-Phe4, Gly-ol)-enkephalin (DAGO), (D-Pen2,5)-enkephalin (D-PEN), and trans-(+/-)-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl]-benzeneacetamide methanesulfonate (U-50488H) in different concentrations on synaptic transmission. METHODS: The excitatory postsynaptic potentials (EPSP) in slice preparation of nucleus accumbens of rats were recorded using electric stimulation of the olfactory tubercle area and intracellular micropipettes filled with potassium acetate (3 mol.L-1). RESULTS: Superfusion of DAGO, D-PEN, and U-50488H (1 mumol.L-1) reduced the amplitude of EPSP and the inhibitory effect on EPSP were reversed by superfusing naloxone (Nal, 1 mumol.L-1), in which the DAGO-induced reduction of synaptic transmission was the most effective. The depolarizing responses to microiontophoretic injection of glutamate were reduced by superfusing DAGO in 19 neurons of slice preparation of nucleus accumbens. CONCLUSION: The inhibitory effects of DAGO, D-PEN, and U-50488H on EPSP were in a concentration-dependent manner, and the mechanism of opioid agonists (at least DAGO) reducing EPSP was related to a decrease of postsynaptic transmission mediated by glutamate.  相似文献   

16.
tRNA pseudouridylation activities have been detected in embryonic mouse cell fractions and in extracts from HeLa, mouse L-cell and baby hamster kidney (BHK) cell lines. These activities were identified by the use of heterologous reaction systems, with tRNA from hisT strains of Salmonella typhimurium as substrate. hisT mutants are defective for an enzyme that forms psi residues in the anticodon region of many tRNAs and accumulate undermodified species of tRNA. The pseudouridylation activity from BHK cells has been examined in detail and quantitated by a modified tritium release assay (Cortese, R., Kammen, H.O., Spengler, S.J., and Ames, B.N. (1974) J. Biol. Chem. 249, 1103-1108). Maximal rates of tritium release required a suitable cationic environment (optimally, a combination of Mg2+ and NH4+) and a thiol reductant. The activity was totally inhibited in the presence of thiol-reactive reagents, such as 5,5'-dithiobis(2-nitrobenzoic acid) and p-chloromercuribenzoate. A major portion of this 3H release activity was associated with psi modification reactions. This conclusion stems from the following observations: (a) BHK extracts preferentially catalyzed a release of 3H from hisT [5-3H]tRNA, rather than from similarly labeled wild type tRNA; (b) this activity was specific for protons attached to C5 of the pyrimidine rings; no release of 3H was obtained with hisT or wild type [6-3H]tRNA as substrate; (c) the reaction products of hisT tRNA with BHK enzyme were examined by reverse phase column chromatography of tRNAPhe isoacceptors on RPC-5 columns. The enzyme modified both of the principal isoacceptors of hisT tRNAPhe to an equal extent, yielding products indistinguishable from wild type tRNAPhe. Significant levels of 3H release were obtained by the action of enzyme on wild type [5-3H]tRNA, even after gel filtration of the enzyme. This suggests that the enzyme may be able to hypermodify certain species of wild type S. typhimurium tRNA. The activities for wild type tRNA and hisT tRNA appeared to be associated with the same enzyme.  相似文献   

17.
The flux through different segments of the tricarboxylic acid cycle was measured in rat brain synaptosomes with gas chromatography-mass spectrometry using either deuterated glutamine or [13C]aspartate. The flux between 2-oxoglutarate and oxaloacetate was estimated to be 3.14 and 4.97 nmol/min/mg protein with and without glucose, respectively. These values were 3-5-fold faster than the flux between oxaloacetate and 2-oxoglutarate (0.92 nmol/min per mg protein) measured in the presence of glucose. The pattern of intermediates labeling suggests that the overall rate-controlling reaction involves either citrate synthase or pyruvate dehydrogenase but not 2-oxoglutarate or isocitrate dehydrogenase. The enrichment in [3,3,4,4-2H4]glutamate from [2,3,3,4,4-2H5]glutamine was as rapid as in [2,3,3,4,4-2H5]glutamate, which indicates that the aspartate aminotransferase reaction is severalfold faster than the flux through the tricarboxylic acid cycle. [13C]Aspartate was rapidly converted to [13C]malate, suggesting that in intact synaptosomes aspartate entry into the mitochondrion is very slow. The finding that aspartate is taken up by mitochondria as malate, along with the observed high enrichment in [3-2H]malate (from [2,3,3,4,4-2H5]glutamine), is consistent with the substantial synaptosomal activity of the malate/aspartate shuttle.  相似文献   

18.
A solid state NMR method is presented for determination of a backbone dihedral angle phi in peptides, being based on the previously reported method, relayed anisotropy correlation (RACO) NMR [Y. Ishii et al., Chem. Phys. Lett. 256 (1996) 133]. In the present method, the 15N-1H and the 13C-1H dipolar tensors in the 1H-15N-13C-1H system are two-dimensionally (2D) correlated via polarization transfer from 15N to 13C under magic angle spinning (MAS). This method was applied to N-acetyl[1,2-13C,15N]D,L-valine, and the H-C-N-H dihedral angle was determined to be 154.0 +/- 1.4 degrees or 206.0 +/- 1.4 degrees, the former agreeing with the X-ray value of 154 +/- 5 degrees.  相似文献   

19.
When ovarian mitochondria from patients with polycystic ovary syndrome (POS) were incubated with [7-3H]17alpha-hydroxypregnenolone and [4-14C]-17alpha-hydroxyprogesterone, 11beta-hydroxylated metabolites were obtained. The mitochondria, prepared from pooled, frozen, polycystic ovarian tissue of 5 patients, converted [7-3H]17alpha-hydroxypregnenolone to 3beta, 11beta, 17alpha--trihydroxy-5-pregnen-20-one (yield 0.065%) and to 3beta, 17alpha-dihydroxy-5-pregnene-11,20-dione (0.22%), while [4-14C]17alpha-hydroxyprogesterone was converted to 21-deoxycortisol (0.1%). Incubation of mitochondria, prepared from 4 pooled samples of frozen, normal ovarian tissue, yielded no evidence of 11beta-hydroxylation of either of the substrates. Mitochondria obtained from fresh, polycystic ovarian tissue of a single patient with POS converted [7-3H]17alpha-hydroxypregnenolone to 3beta,17alpha-dihydroxy-5-pregnene-11,20-dione (2.1%) and [4-14C]17alpha-hydroxyprogesterone to 21-deoxycortisol (0.1%). When the same mitochondrial preparation was incubated simultaneously with [7-3H]17alpha-hydroxypregnenolone and [4-14C]11-deoxycortisol, it converted 17alpha-hydroxypregnenolone to 3beta,17alpha-dihydroxy-5-pregnene-11,20-dione (1.9%), but no 11beta-hydroxylated derivatives of 11-deoxycortisol were found. These results demonstrate that ovaries of patients with POS contain an 11beta-hydroxylase active towards C-21-deoxysteroids but inert to C-21-hydroxysteroids such as 11-deoxycortisol.  相似文献   

20.
Inducible nitric oxide synthase dependent production of nitric oxide (NO) plays an important role in inflammation. We investigated whether pristimerin ((20alpha)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-te traen-carboxylic acid-(29)-methylester), an antitumoral, antimicrobial as well as anti-inflammatory plant compound, has an effect on the inducible NO synthase system in lipopolysaccharide-activated RAW 264.7 macrophages. Pristimerin dose dependently (IC50: 0.2-0.3 microM) reduces nitrite accumulation, a parameter for NO synthesis, in supernatants of lipopolysaccharide-stimulated (1 microg/ml, 20 h) macrophages. This effect correlates with a reduced inducible NO synthase enzyme activity measured by conversion of [3H]L-arginine to [3H]L-citrulline and significantly lower levels of enzyme protein (Western blotting) in homogenates of cells cotreated with lipopolysaccharide and pristimerin (12 h). Northern blot analysis and polymerase chain reaction (PCR) showed decreased inducible NO synthase mRNA levels in activated macrophages exposed to pristimerin (4 h). Electrophoretic mobility shift assay (EMSA) demonstrated a markedly reduced binding activity of nuclear factor-kappa B (NFkappaB) in nuclear extracts of pristimerin-treated cells. These results suggest that pristimerin inhibits the induction of inducible NO synthase by a mechanism which involves inhibition of NFkappaB activation. This feature of pristimerin is likely to contribute to its anti-inflammatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号