首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adenocarcinoma of the prostate is the second leading cause of cancer deaths in men. The protein kinase C (PKC) family of signal transducing kinases has been implicated in neoplastic transformation and progression in other tissues, and some evidence suggests roles for PKC in prostate growth and neoplasia. We have detected expression of eight specific PKC isozyme mRNAs (alpha, beta, gamma, delta, epsilon, eta, theta, and zeta) in normal rat whole prostate and found some of these to be differentially expressed in certain Dunning R-3327 rat prostatic adenocarcinoma sublines. PKC zeta mRNA was detected in normal prostate and Dunning H tumor, whereas an alternatively spliced form of PKC zeta RNA was found in Dunning G tumor and normal brain. Both forms of PKC zeta RNA were markedly reduced in the androgen insensitive, highly metastatic Dunning AT-3, MAT-Lu, and MAT-LyLu tumors. We have cloned and report the sequence of the novel portion of the alternatively spliced form of PKC zeta RNA, which is polyadenylated and present in cytoplasm.  相似文献   

3.
BACKGROUND: Apoptosis, or programmed cell death, can be mediated through an endogenous signaling pathway that emanates from a cell surface receptor known as Fas. Although best recognized for its role in the immune system, recent studies have also suggested a role for Fas in mediating apoptosis in the murine prostate. Little is known, however, regarding the role of Fas-signaling in the human prostate, and if this signaling pathway is abrogated in the development of prostate cancer (PC). METHODS: In the current study, seven human PC cell lines were evaluated for their sensitivities to Fas-mediated apoptosis, using both morphologic and flow cytometric methods. Fas expression by each cell line was quantitated by immunofluorescence, and gene expression of three putative inhibitory molecules was analyzed. RESULTS: The differential sensitivities of the cell lines to Fas-mediated apoptosis were found to correlate with the clinical stage of the parental tumors. Specifically, the three most sensitive cell lines were all derived from primary tumors, while the four most resistant cell lines were derived from distant metastases. Immunofluorescent analyses of the PC cell lines revealed that the observed resistance to apoptosis was not due to reduced expression of membrane-bound Fas. Likewise, this resistance did not correlate with increased gene expression of the inhibitory molecules FAP-1, ICE epsilon, and Ich-1S. CONCLUSIONS: Our results using established PC cell lines support previous studies with prostatic tissue specimens, and suggest that the normal, differentiated prostatic epithelium, as well as locally invasive PCs, have the potential to undergo Fas-mediated apoptosis. Conversely, these studies suggest that metastatic PCs have a reduced apoptotic potential that is mediated by a novel mechanism.  相似文献   

4.
To identify genes associated with prostate cancer progression, we developed a strategy involving the use of differential display PCR and a panel of genetically matched primary tumor- and metastasis-derived mouse prostate cancer cell lines. We analyzed sequences that were differentially stimulated by transforming growth factor-beta1 in primary tumor-versus metastasis-derived cell lines, based on our previous studies indicating that acquisition of differential responses to this growth factor could result in phenotypic traits that facilitate tumor metastasis from specific cell clones within the primary tumor. Using this system, we isolated and sequenced a cDNA fragment that encoded mouse lysyl oxidase (LO) and was induced by transforming growth factor-beta1 in primary tumor but not in metastasis-derived cells. Northern blotting analysis revealed increased LO expression in a panel of primary tumor cell lines but significantly reduced or nondetectable expression in their matched metastatic counterparts. Further in situ hybridization analysis revealed LO expression in normal mouse prostate epithelium but, in most cases, progressive loss of expression in primary prostate cancer and associated metastatic lesions. Importantly, in situ hybridization studies of normal human prostate and prostate malignancies revealed a similar loss of expression during progression to metastasis. The progressive loss of LO expression during prostate cancer progression provides information that may increase our understanding of the mechanisms that underlie this disease. In addition, LO may provide a useful molecular marker and/or establish a novel therapeutic target for prostate cancer.  相似文献   

5.
Insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1; also known as Mac25, TAF, and PSF) is a member of the IGFBP superfamily. It is a cysteine-rich protein that shares structural and functional similarities with the conventional IGFBPs. In situ hybridization of prostate tissue sections show intense IGFBP-rP1 messenger ribonucleic acid (mRNA) expression in normal stroma and glandular epithelium. There was a significant loss of detectable IGFBP-rP1 mRNA in metastatic prostate tissue. IGFBP-rP1 mRNA (Northern blots) and protein (immunoblots) were detectable in primary cultures ofprostatic stromal and epithelial cells as well as in the immortalized nonmalignant prostatic human epithelial cells, P69, and in the P69 metastatic subline, M12. IGFBP-rP1 expression was not detectable in the prostatic cancer cell lines PC-3, DU145, and LNCaP. IGFBP-rP1 expression was regulated in P69 cells but not in M12 cells. Protein and mRNA expression was up-regulated by IGF-I, transforming growth factor-beta, and retinoic acid. The observations that IGFBP-rP1 expression is significantly diminished in prostate tumorigenesis and is regulated in nonmalignant prostate cells suggest IGFBP-rP1 is important in normal prostatic cell growth.  相似文献   

6.
Prostate cancer remains the most commonly diagnosed cancer in American males and is the second leading cause of cancer death in this group. Hydrazine sulfate, an inhibitor of gluconeogenesis, has been proposed as a means to improve nutritional status and improve survival in patients with solid tumors. We investigated the effects of hydrazine sulfate on both in vitro and in vivo models of prostate cancer. We examined the cytotoxicity of hydrazine sulfate in both human (LNCaP and PC-3) and animal (MAT-LyLu) prostate cancer cell lines. No growth inhibition was observed. In vivo, hydrazine sulfate did not suppress the growth of implanted Dunning rat prostate MAT-LyLu cells. Hydrazine sulfate does not have activity in these models of prostate cancer and may not be an appropriate therapy for patients with prostate cancer.  相似文献   

7.
8.
Polypeptide growth factors are positive and negative regulators of prostatic growth and function. Expression and biological effects of epidermal growth factor (EGF), transforming growth factors (TGFs) alpha and beta, fibroblast growth factors (FGFs), and insulin-like growth factors (IGFs) in the prostate have been extensively studied. EGF and TGF alpha, which share the same receptor, are strong mitogens for prostatic epithelial and stromal cells. Their paracrine mode of action in normal tissue and early-stage tumors is apparently altered towards an autocrine stimulation in hormone-independent tumors, which gain the ability to produce TGF alpha by themselves. TGF beta has a dual role in the regulation of prostatic growth. It inhibits growth of prostatic epithelial cells in culture and mediates programmed cell death after androgen withdrawal. However, advanced prostatic carcinomas become insensitive to the inhibitory effect of TGF beta. Several members of the FGF family have been identified in the prostate. They are mainly or exclusively expressed in the stromal cells, and stimulate the epithelial cells. In the rat Dunning tumor model, progression is accompanied by distinct changes in the expression of FGFs and their receptors. In the hyperplastic tissue, basic FGF (bFGF) is accumulated. This growth factor is also a potent angiogenic inducer, expression of which may determine the metastatic capability of a tumor. IGFs are paracrine growth stimulators in the normal and hyperplastic prostate. It is still under consideration whether prostatic cancer cells gain the ability to produce IGF-I by themselves and thus shift to an autocrine mode of IGF-I stimulation. Growth factors also interact with the androgen-signaling pathway. IGF-I in particular, other growth factors as well, can activate the androgen receptor.  相似文献   

9.
10.
The frequency of bcl-2 protein expression was evaluated using immunocytochemical staining during the progression of human and rat prostate cancer from an androgen-sensitive nonmetastatic to an androgen-independent metastatic phenotype. Previous studies (A. S. Shabaik et al., J. Urol. Pathol., 3: 17-27, 1995) demonstrated that 0 of 20 high-grade prostatic intraepithelial neoplasias and only 3 (7%) of 41 pathologically localized stage B human prostatic cancers had detectable bcl-2 staining. In the present study, 5 (17%) of 30 lymph node metastases from pathologically disseminated D1 disease and 14 (52%) of 27 bone metastases from pathologically disseminated D2 disease expressed detectable bcl-2 protein. These data demonstrate that there is a statistically significant (P < 0.05) association between expression of bcl-2 and the progression of human prostatic cancer cells to a metastatic phenotype. Such bcl-2 expression is not absolutely required, however, for either androgen independence or metastatic ability by human prostatic cancer cells. Likewise, within a series of eight distinct Dunning R3327 rat prostatic cancer sublines, which differ widely in their progressional state, there is also a significant association (P < 0. 05) between bcl-2 expression and progression (four of six androgen-independent rat sublines expressed bcl-2 protein). Again in this rodent system, bcl-2 expression is not an absolute requirement for either androgen independence or metastatic ability. For example, the androgen-independent highly metastatic Dunning AT-3 subline, while expressing bax protein, does not express bcl-2 protein. If such AT-3 cells are genetically engineered to express bcl-2, these expressing cells are now cross-resistant to a variety of mechanistically diverse noxious insults (e.g., viral infection or exposure to antimetabolites, alkylating agents, or agents which elevate the intracellular free Ca2+). The ability of bcl-2 to inhibit the programmed death of AT-3 cells induced by these agents involves a late step in the death process, since the early induction of expression of a series of genes associated with apoptosis is not impaired by bcl-2 expression. These data demonstrate that the development of androgen independence and/or metastatic ability can be associated with the expression of bcl-2 protein but that bcl-2-independent mechanisms also exist for such progression.  相似文献   

11.
Procoagulant activity of pairs of cell lines, which were derived from the same original cell type but which possess different growth characteristics and metastatic properties, was examined. The following characteristics were considered suggestive of a greater likelihood of metastatic potential: high histological grade; establishment of the line from a metastatic rather than a nonmetastatic cancer; increased tumorigenicity in nude mice; and/or estrogen receptor-negative mammary cancer. Procoagulant activity was evaluated by a two stage clotting assay. Procoagulant activity was highly variable, with up to a 1,300-fold difference, among the cancer cell lines examined. The rate of clot formation was factor VII dependent and was totally inhibited by an anti tissue factor monoclonal antibody, indicating that tissue factor was the only significant procoagulant present in these cancer cells. Tissue factor antigen expression, evaluated by ELISA, correlated with procoagulant activity. In all pairs of cancer cell lines, those with characteristics of increased proliferative potential had increased tissue factor levels compared to cell lines that originated from the same cell type, but which possess less aggressive characteristics. Tissue factor activity in these cancer cells was increased by cell lysis or by exposure of intact cells to a calcium ionophore, similar to results previously obtained in fibroblasts. Tissue factor mRNA was evaluated by northern blot analysis using a specific probe complementary to tissue factor mRNA. The previously described predominant tissue factor mRNA species of 2.2 kb was identified in the majority of cancer cell lines examined, but tissue factor mRNA species of 3.2 to 3.4 kb were also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The tissue concentrations of urokinase-type plasminogen activator (u-PA), urokinase-type plasminogen activator receptor (u-PAR), plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were investigated by an ELISA technique in normal and malignant samples of the prostate from 24 patients undergoing radical prostatectomy for organ-confined prostate cancer. The median concentration of u-PA was significantly higher in cancerous than in normal prostate tissue (p = 0.006). No significant increase of u-PAR, PAI-1 and t-PA was found in cancer tissue in comparison with the benign samples (p > 0.05). Assessment of the relationship between fibrinolytic proteins and DNA ploidy revealed an increased u-PA, u-PAR and PAI-1 in diploid prostate cancer as compared with the normal controls. However, in aneuploid cancer u-PA remained high but u-PAR and PAI-1 were decreased. This led to a higher local concentration of u-PA in aneuploid samples than in normal prostate and in diploid prostate cancer. No alteration of median t-PA was found in benign prostate or in diploid or aneuploid prostate cancer. The altered expression of u-PA, u-PAR and PAI-1 in diploid and aneuploid prostate cancer suggests a possible role of fibrinolytic proteins in the different biologic behavior of tumors, and may be one explanation for the higher metastatic potential of aneuploid tumors.  相似文献   

14.
Prostate cancer is the most common form of cancer in older men and the major cause of death from prostate cancer is metastatic disease. The matrix metalloproteinases (MMPs) play a significant role in the growth, invasion and metastasis of many tumors, including those of the prostate. We previously demonstrated that doxycycline, a synthetic tetracycline, inhibits MMPs and cell proliferation and induces apoptosis in several cancer cell lines. We also demonstrated that in an in vivo model of metastatic breast cancer in athymic mice doxycycline inhibits tumor size and regrowth after resection. In the present study, gelatinolytic activity in the human prostate cancer cell line, LNCaP, was suppressed and significant inhibition of cell growth occurred after exposure to 5 or 10 microg/ml of doxycycline, while cell growth was normal in untreated cells. Radioisotope incorporation into proteins was reduced by doxycycline. DNA fragmentation, consistent with apoptosis, was demonstrated in cells treated with doxycycline. These data suggest that doxycycline may have potential utility in the management of prostate cancer.  相似文献   

15.
16.
Progression of prostate cancer from an androgen sensitive to androgen insensitive tumor has previously been shown to be accompanied by a change in alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in a rat model of prostate cancer. This change results in loss of the FGF-R2(IIIb) isoform and predominant expression of the FGF-R2(IIIc) isoform. We sought to determine whether this change in FGF-R2 splicing is also associated with androgen insensitivity in human prostate tumors. We analysed three well characterized human prostate cancer cell lines and three metastatic prostate tumors which have been maintained as xenografts in nude mice. One of the cell lines, LNCaP, and two of the xenografts, DUKAP-1 and DUKAP-2, have been characterized as androgen sensitive, whereas two of the cell lines, DU-145 and PC-3, and one of the xenografts, DU9479, display androgen independent growth. Using an RT-PCR based assay, we demonstrated that progressive loss of the FGF-R2(111b) isoform correlated with androgen insensitivity in these human prostate cancer models. These findings lend support to the hypothesis that that loss of FGF-R2(IIIb) may be one step in a series of events which lead to progression of human prostate cancer.  相似文献   

17.
The molecular mechanisms responsible for metastasis are not fully understood. Recently, expression of the KAI1 gene on human chromosome 11p11.2 was found to be down-regulated in metastatic prostate cancer cell lines compared with normal human prostate, suggesting that KAI1 may be a metastasis suppressor gene. The aim of this study was to investigate whether there is reduced expression of KAI1 in late-stage bladder cancer. Sixty-six paraffin-embedded bladder tissue sections were analyzed for KAI1 mRNA by in situ hybridization. Nineteen of these were from patients with no histological evidence of bladder cancer, and 47 were from papillary transitional cell carcinomas (TCCs); of these, 16 were highly invasive. KAI1 mRNA was highly expressed in the specimens of normal bladder (11 of 11; 100%), inflammatory bladder (5 of 8; 63%), and noninvasive papillary TCCs of grades 1 and 2 (15 of 24; 63%), compared to grade 3 papillary TCCs (1 of 7; 14%) or invasive TCCs (1 of 16; 6%). The differences in expression between local and invasive disease were statistically significant (P 相似文献   

18.
There is a critical need for markers that can be used to predict accurately the malignant potential of histological prostate cancers (J. T. Isaacs. Am. J. Pathol., 150: 1511-1521, 1997). Metastasis-suppressor genes are attractive candidates for marker development because, by definition, their loss should be associated with the acquisition of metastatic ability. In an effort to identify such genes, a single copy of human chromosome 12, tagged with the neomycin resistance gene, was introduced into highly metastatic Dunning AT6.1 prostate cancer cells by microcell-mediated chromosomal transfer. Thirty-two AT6.1-12 clonal cell lines were established and the region(s) of chromosome 12 retained was determined by sequence tagged site-based PCR analysis. Representative AT6.1-12 clones containing overlapping regions of chromosome 12 were characterized cytogenetically and were shown to have a normal complement of parental AT6.1 rat chromosomes. Fluorescence in situ hybridization, performed on representative AT6.1-12 hybrids, demonstrated a single human chromosome 12-specific signal. The metastatic ability of six representative clones was tested in immunodeficient mice. All of the AT6.1-12 clones showed the same in vivo growth rates as the control AT6.1-neo cells. Clonal cell lines that contained a conserved approximately 70-cM portion of chromosome 12 (e.g., AT6.1-12-8, -8-1, and -8-3), showed a >30-fold suppression in the number of macroscopic surface lung metastases. Mice that received injections of these cells developed a mean number 4 lung metastases whereas mice that received injections of other AT6.1-12 hybrids (lacking the approximately 70-cM region) or AT6.1-neo control cells, developed a mean number of 140 metastases. Interestingly, histological examination of the lungs of the mice that received injections of AT6.1-12-8 cells showed essentially no microscopic metastases. These findings suggest that a gene(s) encoded by the approximately 70-cM portion of human chromosome 12 suppresses an early step in the metastatic cascade.  相似文献   

19.
Cathepsin D (Cath D) overexpression in breast cancer cells is associated with increased risk of metastasis in patients according to several clinical studies. The amino acid sequence of Cath D in two breast cancer cell lines was normal, but glycosylation appears to be different with more acidic isoforms. Transfection of a human cDNA Cath D expression vector increases the metastatic potential of 3Y1-Ad12 embryonic rat tumorigenic cells when intravenously injected into nude mide. The mechanism of Cath-D-induced metastasis seems to require maturation of the proenzyme, mostly in large acidic compartments identified as phagosomes. Cath D is mitogenic in different cell types, and different substrates (growth inhibitors, precursors of growth factors, etc.) are proposed to mediate this activity.  相似文献   

20.
Phenylbutyrate (PB), a novel lead compound for prostate cancer therapy, has molecular activities distinct from its metabolite, phenylacetate (PA). Both PB and PA promote differentiation in human prostate cancer cell lines, yet little data exist comparing the cytotoxic effects of each drug. We found that PB is more potent than PA in vitro; PB is 1.5-2.5 times more active at inhibiting growth and inducing programmed cell death than PA at clinically achievable doses against each human prostate cancer line studied. PB is equipotent to sodium butyrate, which induces apoptosis and differentiation through multiple mechanisms. Exposure of prostate cancer cell lines to PB reduces their DNA synthesis, leads to fragmentation of genomic DNA, and causes 50-60% of cells to undergo apoptosis. These PB-induced effects are 2-10 times greater than those of the control or PA. The stereotypical changes of apoptosis can be seen with sodium butyrate at similar concentrations, but not with PA. Prostate cancer cell lines overexpressing P-glycoprotein or possessing heterogeneous molecular alterations, including p53 mutations, are also sensitive to the effects of PB. In vivo, Copenhagen rats treated with oral PB had delayed growth of the androgen refractory Dunning R-3327 MAT-LyLu prostate cancer subline by 30-45% in a dose-dependent manner. These results demonstrate that PB induces cytotoxicity via apoptosis in human prostate cancer, in addition to its differentiating properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号