首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
本文介绍一种基于PLC控制的能源自给型一挡内高压线巡检机器人,并提出该控制系统的设计与实现方法。该机器人可实现遥控与自主控制模式的有机结合,并可利用太阳能进行能源自给,采用可编程控制器与微机控制结合实现运动控制系统。在实验室模拟超高压输电线线路环境下进行实验研究,并通过室外实验,结果表明,该巡检机器人可实现有效的越障,稳定性高。  相似文献   

2.
《机械科学与技术》2014,(11):1621-1626
机器人足部与壁面间的粘附能力及其运动控制策略是爬壁机器人能够在处于不同倾斜度的壁面上爬行的关键技术。模仿甲虫足部钩刺对抓的特征及尺蠖蠕动爬行运动特性设计了一种可灵活转向的仿生六足爬行机器人机构。该机器人采用CPG(central pattern generator)仿生控制方法实现其在粗糙壁面上的任意方向的运动,并且通过超声波传感器的反馈信号能够实现避障功能。机器人足部采用对抓设计提高了爬行稳定性,同时CPG控制方法简单、新颖。基于Matlab软件建立了CPG控制网络,并结合反馈信号实时调节网络输出。在Webots移动机器人仿真环境下完成了机器人建模,CPG控制器程序编写,通过动态仿真验证了六足机器人机构和控制方法的合理性,机器人爬行速度约2.7 cm/s。  相似文献   

3.
根据气体绝缘金属封闭开关设备内部的作业需求,通过对壁虎的身体结构和运动规律的研究,设计了一种能在变电站气体绝缘金属封闭开关内部稳定爬行的基于真空吸附的仿壁虎机器人结构,并进行相应的控制系统硬件设计和控制系统软件架构设计。设计相应的运动步态,选用对角步态实现机器人的直线行走和横向行走。在理论设计的基础上,制造样机并在圆形管道内进行测试实验。实验结果表明,遥控器可以控制机器人端和真空吸附端,并且可以返回当前状态。在指令的控制下,机器人可以沿管壁进行前后和横移爬行。  相似文献   

4.
针对现有四足机器人控制系统实时性与运行效率不高的问题,本文提出了一种以NI Single Board RIO为核心应用多核技术和FPGA构建的高度并行的系统平台架构,建立了一种结合分布式控制系统与分层式控制系统特点的复合式控制系统。此系统应用FPGA并行输出占空比实时变化的PWM波实现了多电机的实时控制,提高了机器人的灵活性。最后,在此平台上进行单腿控制性能测试实验。实验结果表明该控制系统具有良好的可靠性,能够实现对机器人移动平台的实时控制。  相似文献   

5.
介绍一种基于FPGA的仿生机器人机器手机构及控制系统。该系统以上位机为控制核心,结合电容式角位移传感器技术,在上位机与FPGA之间实现通信,从而实现了控制机器手机构的抓、握、夹放等动作。实验证明该控制系统满足了机器手的控制需要。  相似文献   

6.
为研究基于蠕动原理的仿生爬行机器人运动,以气动弯曲驱动器和伸长驱动器为机器人主体,设计了一种软体爬行机器人。针对爬行机器人在平面及管道中的运动,根据爬行机器人的力学特性和运动过程中摩擦力与驱动力之间的关系,分析了爬行机器人实现爬行运动的条件,提出了爬行机器人驱动方式。通过实验,验证了所提出的驱动方式能够实现软体爬行机器人的移动,为今后软体爬行机器人的研究及应用提供了基础。  相似文献   

7.
为实现微型机器人无缆驱动,设计一种基于磁弹性复合材料的磁控微型软体爬行机器人,通过三维亥姆霍兹线圈构建变换空间磁场,控制磁性材料产生磁力矩,并耦合机器人重力、摩擦力及自身的弹性变形,使得机器人实现多个连续的姿态变换,完成爬行动作。介绍微型软体爬行机器人结构和制作流程,建立机器人准静态力平衡方程,利用Abaqus有限元仿真和试验对比分析了机器人弯曲变形、接触面摩擦、爬行步长、转向等运动特性,在此基础上建立机器人爬行动作的速度模型,研究控制信号频率与幅值对机器人爬行速度的影响,并最终实现爬行机器人的路径规划控制。试验和仿真结果表明,该机器人能实现在xy平面内任意方向的爬行动作,为进一步揭示磁控微型机器人的运动特性及规律奠定了基础。  相似文献   

8.
为了提高蛇形机器人的自主作业能力和环境探索能力,设计了一种基于STM32的夹爪式蛇形机器人控制系统。该系统包括计算机控制终端、机器人运动系统和检测系统3部分,机器人采用STM32作为主控芯片,通过多种传感器采集所需环境信息,头部关节具有机械夹爪能够实现抓取任务。为了简化机器人的控制复杂度,在控制器中引入基于Hopf振荡器的双层中枢模式发生器(CPG)方法用于生成机器人的步态控制信号。经过实验验证,该控制系统有效提高了蛇形机器人的自主作业能力,并且能够满足环境信息实时检测的任务要求。  相似文献   

9.
目前电力特种机器人的研究主要集中在巡线机器人方面,用于巡检电力铁塔的机器人还鲜有成果.攀爬电力铁塔机器人爬行方案的设计,是研制攀爬电力铁塔机器人的基础.本文通过分析比较几种爬行机构,结合攀爬电力铁塔机器人的性能要求及工作环境确定了该机器人的一种爬行方案.  相似文献   

10.
设计了一种新型轮腿混合机器人,该机器人结合了轮式移动机构与足式移动机构的优点,阐述了机器人的总体结构。根据该轮腿混合机器人的运动要求和性能特点,设计了基于MEGA16单片机的整套机器人控制系统,该控制系统实现了用NRF2401无线控制机器人的基本运动。根据所遇路况,通过无线遥控可以控制和选择机器人的轮式运动和腿式运动两种工作模式,增加了机器人对环境的适应性。  相似文献   

11.
针对管道机器人在后退过程中需要借助人手动来收线的问题,提出了一种智能化的电缆绞盘系统,它是通过管道机器人爬行器和绞盘间电缆的恒张力控制来实现的.由此建立了基于模糊控制的恒张力模型,并利用Matlab软件对张力控制系统进行了仿真研究,结果表明该方法是可行的,基于模糊控制的恒张力系统在机器人系统中具有很好的应有价值.  相似文献   

12.
步行康复机器人轨迹控制方法研究   总被引:1,自引:0,他引:1  
为了满足神经受损患者步行康复训练需要,设计了以外骨骼助行腿为核心的步行康复机器人,其重要的要求是保证机器人的运动轨迹符合患者康复训练要求。为使机器人能模拟步态为患者提供康复训练,在合理的步态规划后对轨迹的控制方法进行了研究,在控制系统软、硬件平台上完成了步行康复机器人助行腿的两种轨迹控制方式(位置控制和速度控制)。通过实验验证了控制方式的可行性,满足了患者步态训练需要。同时实验结果表明,速度控制方式比位置控制方式更加适合步行康复机器人。  相似文献   

13.
针对液压驱动机械手的轨迹跟踪控制问题,在分析研究机械手动力学特点的基础上,推导出机械手的数学模型,分析了神经网络自适应控制的特点,提出了基于函数连接神经网络液压驱动机械手的自学习控制结构与控制算法。其控制结构着重智能知识的加强;控制算法以PD形成学习规则为基础,运算结果不是直接参与控制;而是根据控制器作用于系统之后所产生的误差及其微分对控制器作出评价和修正,仿真和实验研究证明了数学模型的有效性及控制方法的可行性。  相似文献   

14.
输电线路巡检机器人越障控制研究   总被引:6,自引:1,他引:6       下载免费PDF全文
介绍了超高压输电线路巡检机器人越障控制方法。根据巡检作业任务的要求,采用遥控与局部自主控制相结合的方法,实现了巡检机器人沿线行走及跨越障碍的功能。采用基于单目摄像头定位和视觉伺服的方法,实现了巡检机器人的自主越障控制。实验结果表明,该机器人可沿线行走并自主跨越障碍,从而验证了控制系统设计的有效性与合理性。  相似文献   

15.
研究了一种基于网版印刷法的空间太阳电池阵自动装配机器人的控制系统,提出了适合该机器人的专家模型预测算法和自适应数字PID算法,并将这两种算法运用到机器人的位置精度控制中。在实际的生产环境中,专家模型预测算法能使电池串在最大3600mm的行程中将位置尺寸误差控制在0.01mm以内,和自适应PID算法相比精度更高,稳定性也更好。  相似文献   

16.
分析了机器人、法兰盘和工具坐标系之间的空间关系,根据机器人运动方程的欧拉变换解和机器人控制命令函数,提出了外部主控计算机对机器人多个工具调换控制的实现方法,摆脱了机器人控制柜对可用工具数目和当前工具设置的限制。设计了MOTOMAN-UP20型机器人多工具循环复杂作业控制系统,编制了相应的控制软件,进行了大量的实验研究,并取得了良好的效果。  相似文献   

17.
针对具有线性二阶积分运动学模型的机器人集群系统,基于机器人之间的相对状态信息设计了分布式编队控制器.通过变量替换,将机器人集群系统的编队问题转换为一致性控制问题,推导得到了机器人集群系统实现期望编队队形的充分性条件.利用人工势场函数的方法,设计了具有避障功能的机器人编队控制器.最后,仿真实验证明,机器人集群系统实现编队并能够避免与障碍物发生碰撞.  相似文献   

18.
本文介绍了喷漆机器人及其多级计算机控制系统.该系统上位主控机为STD总线的16位工控机,五个下位从控机为STD总线的单片机.采用示教编程方式,系统配置的软盘驱动器可以将示教结果存储到磁盘中.机器人由具有防爆功能的步进电机驱动.为提高控制性能,驱动系统采用闭环控制.  相似文献   

19.
6自由度水下机器人动力学分析与运动控制   总被引:13,自引:0,他引:13  
对6自由度水下机器人的动力学与运动控制进行研究。首先考虑重力、浮力、推力以及水动力的影响,建立水下机器人的动力学模型,对机器人的复杂水下动力学行为进行描述。在此基础上,根据解出加速度法设计非线性控制器,包括内外两个控制回路。其中外控制回路根据机器人实际轨迹与期望轨迹之间的偏差进行负反馈控制,内控制回路根据机器人动力学特性引入非线性补偿,把机器人转化为一个更易于控制的线性系统,从而准确实现对理论轨迹的跟踪。最后对水下机器人跟踪目标进行运动控制仿真。从仿真结果可以看出,利用该方法可以使水下机器人具有良好的轨迹跟踪能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号