首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of acute and chronic administration of cocaine on the antinociception and tolerance to the antinociceptive actions of mu-(morphine), kappa-(U-50,488H), and delta-([D-Pen2,D-Pen5]enkephalin; DPDPE), opioid receptor agonists were determined in male Swiss-Webster mice. Intraperitoneal injection of 40 mg/kg of cocaine by itself produced weak antinociceptive response as measured by the tail-fick test but the lower doses were ineffective. Administration of morphine (10 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (10 microg/mouse, ICV) produced antinociception in mice. Cocaine (20 mg/kg) potentiated the antinociceptive action of morphine and DPDPE but had no effect on U-50,488H-induced antinociception. Administration of morphine (20 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (20 microg/mouse, ICV) twice a day for 4 days resulted in the development of tolerance to their antinociceptive actions. Tolerance to the antinociceptive actions of morphine and U-50,488H was inhibited by concurrent treatment with 20 or 40 mg/kg doses of cocaine; however, tolerance to the antinociceptive action of DPDPE was not modified by cocaine. It is concluded that cocaine selectively potentiates the antinociceptive action of mu- and delta- but not of the kappa-opioid receptor agonist. On the other hand, cocaine inhibits the development of tolerance to the antinociceptive actions of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

2.
The effects of 7-nitroindazole (7-NI), an inhibitor of the neuronal nitric oxide synthase (nNOS) which does not increase blood pressure, on tolerance to the antinociceptive activity of mu-(morphine), kappa-(U-50,488H) and delta-([D-Pen2, D-Pen5]enkephalin, DPDPE) opioid receptor agonists were determined in mice. Male Swiss-Webster mice were made tolerant by twice daily injections of morphine (20 mg/kg, s.c.), U-50,488H (25 mg/kg, i.p.) or DPDPE (20 micrograms/mouse, i.c.v.) for 4 days. When tested on day 5, tolerance to their antinociceptive activity was evidenced by decreased response in chronic drug treated mice in comparison to vehicle-injected mice. Concurrent administration of 7-NI (20, 40 or 80 mg/kg, i.p.) with DPDPE did not modify the development of tolerance to the antinociceptive action of DPDPE. However, 7-NI (40 or 80 mg/kg, i.p.) inhibited the development of tolerance to the antinociceptive activity of morphine and U-50,488H but the lower dose of 7-NI (20 mg/kg, i.p.) was not effective. Chronic administration of 7-NI by itself did not modify the acute response to morphine, U-50,488H or DPDPE. It is concluded that a specific inhibitor of nNOS can inhibit tolerance to the antinociceptive activity of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

3.
Various doses of MK-801 ((+/-)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5, 10-imine maleate), a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist (0.001-1 microgram) injected intracerebroventricularly (i.c.v.) alone did not show any antinociceptive effect. MK-801 (0.001-1 microgram i.c.v.) dose dependently attenuated the inhibition of the tail-flick and hot plate responses induced by i.c.v. administered morphine (1 microgram), [D-Pen2, D-Pen5]enkephalin (DPDPE; 10 micrograms), and U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeoce tamide ) 60 micrograms). However, the inhibition of the tail-flick and hot plate responses induced by i.c.v. administered beta-endorphin (1 microgram) was not changed by i.c.v. administered MK-801. Our results indicate that, at the supraspinal level, NMDA receptors are involved in the production of antinociception induced by supraspinally administered morphine, DPDPE, and U50,488H but not beta-endorphin.  相似文献   

4.
The purpose of this study was to determine whether dopamine (DA) systems modulate kappa opioid-mediated ultrasonic vocalizations (USVs), antinociception, and locomotion in young rats. Seventeen-day-old rats were injected with the kappa agonist U-50,488 (0.0-7.5 mg/kg) and saline, the D?-like receptor agonist R(-)-propylnorapomorphine (NPA; 0. 1 or 1.0 mg/kg), the indirect DA agonist cocaine (10 or 20 mg/kg), or the DA antagonist flupenthixol (0.25 or 0.5 mg/kg). USVs and locomotion were measured for 6 min, with antinociception being assessed with a tail-flick test. Kappa receptor stimulation produced analgesia and increased USVs and locomotion. U-50,488-induced analgesia was potentiated by NPA, whereas U-50,488-induced USVs were attenuated by both DA agonists. NPA and flupenthixol depressed U-50,488's locomotor effects. These results show that DA systems interact with kappa opioid systems to modulate USVs, antinociception, and locomotion in preweanling rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The antinociceptive potency of dihydroetorphine in diabetic mice was examined. Subcutaneous administration of dihydroetorphine produced a dose-dependent antinociception in both non-diabetic and diabetic mice. The antinociceptive potency of s.c. dihydroetorphine was less in diabetic mice than in non-diabetic mice. The antinociception induced by i.c.v. dihydroetorphine (0.02 microgram) was also significantly less in diabetic mice than in non-diabetic mice. The antinociceptive effects of dihydroetorphine (10 micrograms/kg i.p.) in both diabetic and non-diabetic mice were significantly antagonized by s.c. administration of beta-funaltrexamine, a selective mu-opioid receptor antagonist. Furthermore, the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in non-diabetic mice, but not in diabetic mice, was also significantly antagonized by naloxonazine, a selective mu 1-opioid receptor antagonist. The time course and the potency of the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in diabetic mice were similar to those in naloxonazine-treated non-diabetic mice. Naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist, had no significant effect on the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in both diabetic and non-diabetic mice. These results suggest that dihydroetorphine produces an antinociceptive effect through the activation of both mu 1- and mu 2-opioid receptors in mice. Furthermore, the reduction in dihydroetorphine-induced antinociception in diabetic mice, as compared with non-diabetic mice, may be due to the hyporesponsive to supraspinal mu 1-opioid receptor-mediated antinociception in diabetic mice.  相似文献   

6.
The effect of nicotine administered supraspinally on antinociception induced by supraspinally administered opioids was examined in ICR mice. The intracerebroventricular (i.c.v.) injection of nicotine alone at doses from 1 to 12 micrograms produced only a minimal inhibition of the tail-flick response. Morphine (0.2 micrograms), beta-endorphin (0.1 microgram), D-Pen2.5-enkephalin (DPDPE; 0.5 microgram), trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl] benzeocetamide (U50, 488H; 6 micrograms) caused only slight inhibition of the tail-flick response. Nicotine dose dependently enhanced inhibition of the tail-flick response induced by i.c.v. administered morphine (0.2 microgram) or beta-endorphin (0.1 microgram). The degree of enhancing effect of nicotine toward beta-endorphin-induced inhibition of the tail-flick response was greater than toward morphine-induced inhibition of the tail-flick response. However, i.c.v. administered nicotine at the same doses was not effective in enhancing the inhibition of the tail-flick response induced by DPDPE (0.5 microgram) or U50, 488H (6 micrograms) administered i.c.v. Our results suggest that stimulation of supraspinal nicotinic receptors may enhance antinociception induced by morphine (a mu-opioid receptor agonist) and beta-endorphin (an epsilon-opioid receptor agonist) administered supraspinally. However, the activation of nicotinic receptors at supraspinal sites may not be involved in enhancing the antinociception induced by DPDPE (a delta-opioid receptor agonist) or U50, 488H (a kappa-opioid receptor agonist) administered supraspinally.  相似文献   

7.
The effect of 5-nitro-6,7-dimethyl-1,4-dihydro-2,3-quinoxalinedione (ACEA-1328), a competitive and systemically bioavailable NMDA receptor/glycine site antagonist, was examined on opioid-induced antinociception in the tail flick test. Swiss Webster mice were injected with ACEA-1328 either alone or in combination with morphine or (+/-)-trans-U-50488 methanesulfonate (U50,488H), a mu- and a kappa-opioid receptor agonist, respectively, and tested for antinociception. Systemic administration of ACEA-1328 alone increased the tail flick latencies with an ED50 of approximately 45 mg kg-1. Concurrent administration of ACEA-1328 with morphine, or U50,488H, at doses that did not affect tail flick latencies, potentiated the antinociceptive effect of the opioid analgesics and vice versa. Naloxone, an opioid receptor antagonist, while not modifying the effect of ACEA-1328, did block the augmentation, suggesting that opioid receptors might be involved in the latter effect. 5-Aza-7-chloro-4-hydroxy-3-(m-phenoxyphenyl)quinoline-2(1H)-one (ACEA-0762), a selective NMDA receptor/glycine site antagonist, also showed enhancement of the antinociceptive effect of morphine and U50,488H. However, concurrent administration of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzol[f]quinoxaline (NBQX), a selective non-NMDA receptor antagonist, with morphine did not alter the antinociceptive potency of the opioid analgesic. Overall, the data suggest that ACEA-1328 may increase the potency of the opioid analgesics by antagonising the glycine site associated with the NMDA receptor.  相似文献   

8.
The antinociceptive effects of mu and kappa agonists were examined after the systemic administration of the opioid antagonists nor-binaltorphimine (nor-BNI) and naloxone in the late response or tonic nociceptive phase of the mouse formalin assay. Initially, SC morphine (ED50, 0.97 mg/kg), racemic U-50488H (ED50, 0.79 mg/kg), (-)U-50488 (ED50, 0.41 mg/kg), and another agonist PD 117,302 (ED50, 0.28 mg/kg) were found to produce graded increases in the level of antinociception as measured by this procedure; naloxone, administered immediately before morphine and U-50488H, antagonized their antinociceptive actions. The effects of morphine and U-50488H then were evaluated 10 min to 96 h after the administration of nor-BNI. Subcutaneous nor-BNI at 30.0 mg/kg, but not at 3.0 or 10.0 mg/kg, attenuated the antinociceptive effects of morphine and U-50488H when the interval separating nor-BNI and the agonists was kept constant at 1 h. Time-course analysis of the effects of combinations of nor-BNI with morphine led to irregular findings: 10.0 mg/kg of nor-BNI lessened the effects of morphine (2.0 mg/kg) if the dosing interval was 10 min, whereas 30.0 mg/kg of nor-BNI attenuated the effects of morphine (2.0 mg/kg) if the dosing interval was 1 or 4 h; 10.0 mg/kg of nor-BNI also diminished the antinociceptive effects of U-50488H (1.7 mg/kg) only if the interval spacing the two drugs was 24 h. In comparison, a threefold higher dose of nor-BNI (30.0 mg/kg) reduced the effects of U-50488H (1.7 mg/kg) if the interval was 1 h or more. In these latter experiments, the antagonist effects of SC nor-BNI (30.0 mg/kg) were evident up to 96 h posttreatment. These results show that the mu opioid antagonist activity of nor-BNI is variable and that the kappa opioid antagonist selectivity of nor-BNI is a function of dose and treatment interval and is long-lasting even after systemic administration.  相似文献   

9.
The antinociceptive effects of the combination of spinal morphine and gabapentin were evaluated in the tail-flick test in rats. The intrathecal coadministration of a subantinociceptive dose of morphine at 0.2 microgram and gabapentin at 300 micrograms produced significant antinociception. Pretreatment with spinal gabapentin at 300 micrograms shifted the dose-response curve of spinal morphine to the left with a decrease in morphine ED50 value from 1.06 micrograms to 0.34 microgram. The antinociceptive effects produced by the combination of a subantinociceptive dose of morphine and gabapentin were reversed by spinal naloxone at 30 micrograms but were not reversed by spinal bicuculline at 0.3 microgram. Furthermore, the concurrent administration of spinal naloxone at 30 micrograms with the combination of morphine and gabapentin blocked antinociception, while the concurrent administration of spinal bicuculline at 0.3 microgram failed to prevent antinociception. These results indicate that the combination of spinal gabapentin and morphine produces an enhancement of antinociception that appears to involve the spinal mu opioid receptors. Furthermore, repeated administration of gabapentin for 3 days did not affect the enhancing effect of gabapentin on the antinociceptive effect of morphine, indicating that tolerance did not develop to gabapentin's ability to enhance morphine antinociception.  相似文献   

10.
Studies have shown that midazolam acts in the brain to antagonize the antinociception produced by morphine. The purpose of this study was to determine if spinal dynorphin A(1-17) (Dyn) was involved in the antagonistic effects of midazolam. A number of drugs when administered intracerebroventricularly (ICV) to mice release Dyn in the spinal cord to antagonize morphine-induced antinociception. In the present study using the mouse tail-flick test, midazolam administered ICV produced a dose related reduction of the antinociception induced by morphine given intrathecally (IT). The antagonistic action of midazolam against morphine-induced antinociception involved the release of Dyn in the spinal cord, as evidenced by the following results. 1) Administration of naloxone, nor-binaltorphimine and dynorphin antiserum, IT, eliminated the antagonistic effect of midazolam, given ICV, against morphine. Treatment with these opioid antagonists and dynorphin antiserum is known to inhibit the action of spinally released Dyn. 2) Production of desensitization to the effect of spinal Dyn by pretreating with morphine, 10 mg/kg subcutaneously 3 h before the tail-flick test, abolished the antagonistic action of midazolam given ICV. A 3-h pretreatment with midazolam, ICV, also produced desensitization to the antianalgesic action of Dyn given IT. 3) Elimination of the Dyn component of action of midazolam by administration of naloxone, nor-binaltorphimine and dynorphin antiserum, IT, uncovered slight antinociceptive activity of midazolam, given ICV. Coadministration of flumazenil (a benzodiazepine antagonist), bicuculline (a GABA antagonist) and picrotoxin (a chloride ion channel blocker) inhibited the midazolam effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
It is well established that alpha 2-adrenoceptor agonists have sedative and antinociceptive properties. In the current behavioral study we tried to find out if the alpha 2-adrenergic sedative and antinociceptive effects can be dissociated. We tested the hypothesis that alpha 2-adrenergic sedation is mediated by the locus coeruleus (LC) and antinociception by spinal alpha 2-adrenoceptors. Also, we addressed the possibility that intracerebral injection of an alpha 2-agonist might produce its antinociceptive effect by an action directly at the spinal cord. Medetomidine, an alpha 2-adrenergic agonist, or atipamezole, an alpha 2-adrenergic antagonist, were microinjected bilaterally into the LC through chronic cannulae in unanesthetized Han-Wistar rats. The effect on locomotor activity (/vigilance), tail-flick and hot-plate response, and on formalin-induced pain behavior was determined. Medetomidine microinjected into the LC (1-10 micrograms/cannula) produced dose-dependently hypolocomotion (/sedation), increase of response latencies in the hot-plate and the tail-flick tests, and a decrease in the formalin-induced pain behavior. Hypolocomotion (/sedation) was obtained at a lower medetomidine dose (1 microgram/cannula) than antinociception (3-10 micrograms/cannula). The lowest medetomidine dose used (1 microgram/cannula), which induced significant hypolocomotion (/sedation), produced either no antinociception (hot-plate and tail-flick tests) or even a slight hyperalgesia (formalin test). The hypolocomotion (/sedation) but not antinociception (tail-flick test) induced by systemic administration of medetomidine (100 micrograms/kg s.c.) could be reversed by atipamezole (10 micrograms/cannula) microinjected into the LC. Only a high systemic dose of atipamezole (1 mg/kg s.c.) reversed the antinociceptive effects of medetomidine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study evaluated the supraspinal opioid effects of 14 beta-(bromoacetamido)-7,8-dihydro-N(cyclopropylmethyl)-normorphinone+ ++ (N-CPM-H2BAMO) in the mouse acetic acid-induced writhing and tail-flick assays. In the writhing test, N-CPM-H2BAMO produced a time- and dose-dependent antinociception after i.c.v. administration, with a 50% antinociceptive response being obtained with 0.28 (0.19-0.39) nmol when given 10 min before testing. The antinociceptive effect of N-CPM-H2BAMO was antagonized in a dose-dependent manner by the kappa-selective opioid receptor antagonist, nor-binaltorphimine. In the mouse tail-flick assay, N-CPM-H2BAMO failed to produce any antinociception after i.c.v. administration. N-CPM-H2BAMO produced a dose-dependent antagonism of morphine-induced antinociception but not antinociception induced by the delta-opioid receptor agonist [D-Pen2,D-Pen5]enkephalin. Nor-binaltorphimine (0.3 nmol) at dose that completely antagonized N-CPM-H2BAMO-induced antinociception in the writhing assay did not prevent the antagonistic effect of N-CPM-H2BAMO on morphine-induced antinociception. Therefore, these data indicate that N-CPM-H2BAMO produces antinociception by acting at supraspinal kappa-opioid receptors in the writhing assay, and also acts as a mu-opioid receptor antagonist.  相似文献   

13.
Male Swiss-Webster mice were rendered tolerant to morphine by subcutaneous implantation of a morphine pellet, each containing 75 mg morphine base, for 3 days. Mice implanted with placebo pellets served as controls. A high degree of tolerance to the analgesic effect of morphine developed as evidenced by decreased analgesic response to various doses of morphine. A selective kappa-opiate agonist, U-50,488H (8, 16 and 32 mg/kg, i.p.) produced dose-dependent analgesic and hypothermic effects in mice implanted with placebo pellets. A significant decrease in the analgesic and hypothermic effects of U-50,488H was observed in morphine tolerant mice as compared to placebo-treated mice. Mice were rendered tolerant to U-50,488H by injecting the drug (25 mg/kg, i.p.) twice daily for 4 days. Vehicle injected mice served as controls. Tolerance to the analgesic and hypothermic effects of U-50,488H in mice injected chronically with the drug was evidenced by the decreases in the intensity of these responses when compared to those observed in vehicle injected controls. Morphine produced a dose-dependent analgesic and hypothermic effects in mice injected chronically with vehicle but the intensity of these effects was significantly lower in mice injected chronically with U-50,488H. These results indicate that a substantial tolerance to analgesic and hypothermic effects of U-50,488H develops in morphine tolerant mice. The effect of chronic injections of U-50,488H on the binding of [3H]ethylketocyclazocine (EKC) and [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (DAMGO) to whole brain and spinal cord kappa- and mu-opiate receptors was determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Exposure of rats to inescapable shock (IS) potentiated the analgesic response to a low dose (1 mg/kg) of morphine 24 hr later. This effect was blocked by naltrexone (10 micrograms), diazepam (5 micrograms), or 8-hydroxy-2-(di-n-propylamine)-tetralin (8-OH-DPAT; 1 microgram) microinjected into the dorsal raphe nucleus (DRN) 15 min before IS. When microinjected into the DRN at the time of tail-flick testing, 8-OH-DPAT also effectively prevented this effect. Further, intra-DRN administration of a beta-carboline mimicked the effects of IS, because rats treated with methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (1 microgram) and simply restrained displayed potentiated morphine analgesia 24 hr later. These data suggest that this phenomenon shares mechanisms in common with other effects of IS at the level of the DRN.  相似文献   

15.
Pigeons were trained in a 3-choice assay to discriminate among injections of 5.6 mg/kg U-50,488H, 5.6 mg/kg morphine, and vehicle solution. In dose-response tests, subjects rarely responded on the U-50,488H-appropriate key when morphine was administered or on the morphine-appropriate key when they received U-50,488H. A high dose of naltrexone (1.0 mg/kg) completely blocked the morphine cue but failed to block completely the U-50,488H cue. In generalization tests, d-amphetamine primarily engendered saline-appropriate responding. Ethylketazocine produced mixed results, in that moderate doses produced responding on both the morphine- and U-50,488H-appropriate keys, but 3.2 mg/kg engendered primarily morphine-appropriate responding. These results demonstrate the feasibility, but not necessarily the value, of 3-choice discrimination procedures involving mu and kappa agonists and vehicle. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Morphine or morphine-6-glucuronide either alone or in combination with morphine-3-glucuronide was administered intrathecally to rats. Antinociceptive effects were evaluated with the tail flick and the hot plate tests. Motor function was tested using the rotarod test. Estimated ED50 from the dose-response curves for morphine and morphine-6-glucuronide showed about a 30 times more potent antinociceptive effect of morphine-6-glucuronide compared with morphine. Morphine-3-glucuronide had no antinociceptive effect. Simultaneous administration of morphine-3-glucuronide 5.0 micrograms did not show any significant effect on antinociception induced by morphine 1.0 microgram or morphine-6-glucuronide 0.05 microgram.  相似文献   

17.
Morphine-induced antinociception is antagonized by the K(+)-channel blocker glibenclamide (glyburide; Glib), implicating ATP-sensitive (KATP) K+ channels in the analgesic effect of opioids. The present study examined the generality of this conclusion by measuring the effect of Glib on supraspinal (intracerebroventricular; i.c.v.) antinociception produced by representative mu-opioids and the non-opioids pilocarpine and two alpha 2-adrenoceptor agonists (clonidine and tizanidine) using the mouse tail-flick test. Concurrent administration of Glib (40 micrograms, i.c.v.) produced a significant rightward shift of the dose-response curve of morphine, levorphanol, methadone, pilocarpine, clonidine and tizanidine; a modest, but not statistically significant, rightward shift of the dose-response curves of the mu-selective peptides DAMGO ([D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin) and PL017 ([N-Me-Phe3,D-Pro4]-morphiceptin); and no shift of the dose-response curves of alfentanil, carfentanil, fentanyl, sufentanil, or beta-endorphin. Glib produced a leftward shift of the dose-response curve of etorphine. These data support the involvement of KATP-type K+ channels in mediation of supraspinal antinociception, differentiate Glib-sensitive and Glib-insensitive opioid agonists, and reveal fundamental differences among antinociceptive agents in the extent of demonstrable utilization of this transduction pathway.  相似文献   

18.
In the present experiments, we characterized the agonist and antagonist effects of butorphanol in mice. In the mouse radiant-heat tail-flick test, the mu agonists morphine and fentanyl and the kappa agonist U50,488H were fully effective as analgesics, whereas butorphanol was partially effective (producing 82% of maximal possible analgesic effect). Naltrexone was approximately equipotent in antagonizing the effects of morphine, fentanyl and butorphanol; in vivo apparent pA2 values for these naltrexone/agonist interactions were 7.5 (unconstrained). Naltrexone was approximately 10 times less potent in antagonizing the effect of U50,488H (average apparent pK(B) = 6.7). The selective mu antagonist beta-funaltrexamine (0.1-1.0 mg/kg) antagonized the effects of butorphanol in a dose-dependent insurmountable manner. Pretreatment with nor-binaltorphimine (32 mg/kg), a kappa-selective antagonist, did not reliably antagonize butorphanol, and naltrindole (20 and 32 mg/kg), a delta-selective antagonist, failed to antagonize the effects of butorphanol. Low doses of butorphanol (1.0, 1.8 or 3.2 mg/kg) caused parallel, rightward shifts in the dose-effect curve for morphine and parallel leftward shifts in the dose-effect curve for U50,488H. Taken together, the results of the present study suggest that butorphanol is a partial agonist in the mouse radiant-heat tail-flick test and that activity at mu receptors accounts for the majority of its antinociceptive effects.  相似文献   

19.
The effects of the nootropic drugs piracetam and aniracetam on antinociception induced by baclofen, bicuculline, and picrotoxin and on baclofen-induced muscle relaxation were studied in mice. Antinociception was investigated using both the hot plate (thermal stimulus) and abdominal constriction (chemical stimulus) tests. Both behaviour inhibition and muscle relaxation were observed by using the rota-rod test. Piracetam (30 mg/kg, IP) and aniracetam (10 mg/kg, PO) reduced baclofen, bicuculline, and picrotoxin antinociception without modifying analgesia induced by non-GABAergic drugs such as morphine, physostigmine, clomipramine, and diphenhydramine. In this concentration range, piracetam, and aniracetam were also able to reduce the inhibition of rota-rod performance. At higher doses piracetam (100 mg/kg, IP) and aniracetam (100 mg/kg, PO) were able to completely prevent baclofen antinociception. However, when prevention of GABAergic antinociception was complete, piracetam and aniracetam were able to block non-GABAergic antinociception also. comparing the effects of piracetam and aniracetam with those exerted by the GABAB antagonist CGP 35348, a reduction of non-GABAergic analgesia was also observed using higher doses of CGP 35348 (2.5 micrograms per mouse ICV). The present results indicate that piracetam and aniracetam, by preventing both of the investigated effects of baclofen, have some selectivity against GABAB-mediated inhibition. The well-known activity of piracetam and aniracetam on learning and memory might, therefore, depend, at least in part, on the removal of inhibitory GABAB mechanisms that impair attention and cognitive functions.  相似文献   

20.
Development of tolerance and cross-tolerance after acute administration of the mu agonist morphine and the kappa agonist U-50,488H was assessed in rats, through recording of a C-fiber-evoked spinal nociceptive reflex. Rats rendered tolerant to morphine (a single dose of 1 mg/kg i.p.) showed, after a 5-hour period, tolerance to morphine and cross-tolerance to the kappa-opioid receptor agonist U-50,488H, as revealed by depressed C-reflex responsiveness. In contrast, pretreatment with U-50,488H (a single dose of 1 mg/kg i.p.) rendered tolerant the rats to U-50,488H, but the animals did not develop cross-tolerance to morphine. Results indicate that acute administration of mu and kappa ligands leads to development of unidirectional cross-tolerance in rat spinal cord. This points to limitations in using alternated mu and kappa opioid agonists to bypass the problem of development of opioid tolerance in chronic pain complaints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号