共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
康世瑜 《微电子学与计算机》2011,28(8):74-76
提出了一种基于SVM特征选择和C4.5数据挖掘算法的高效入侵检测模型.通过使用该模型对经过特征提取后的攻击数据的训练学习,可以有效地识别各种入侵,并提高检测速度.在经典的KDD 1999入侵检测数据集上的测试说明:该数据挖掘模型能够高效地对攻击模式进行训练学习,能够采用选择的特征正确有效地检测网络攻击. 相似文献
3.
为了解决支持向量机(优化SVM)在网络入侵检测中的参数优化问题,以提高网络入侵检测性能,提出一种入侵杂草(IWO)算法SVM的网络入侵检测模型(IWO-SVM)。首先将SVM参数编码为入侵杂草,以检测率作为优化目标函数,然后通过模拟杂草入侵种子的生长过程找到最SVM的最优参数,从而最优网络入侵检测模型,后在采用KDD99数据集性能测试。结果表明IWO-SVM是一种检测检测率高、速度快的网络入侵检测模型。 相似文献
4.
5.
在医院网络非法入侵检测中,支持向量机的检测泛化性能和参数设定存在较高关联性。为了提升医院网络非法入侵检测率,设计一种基于蚁群优化算法和支持向量机相结合的医院网络非法入侵检测模型,把支持向量机参数设成蚂蚁的方位向量,使用非静止随机提取方法判断目标个体指引蚁群实施全局检索,并在最佳蚂蚁邻域里实施小步长局部检索,获取支持向量机最佳参数,使用最佳参数实现医院网络非法入侵检测。实验结果表明,所设计模型对医院网络非法入侵的误检率最大值仅有1.55%,检测耗时低,且应用效果评价较高。 相似文献
6.
针对最小二支持向量机(LSSVM)参数选择难题,提出一种蝙蝠(BA)算法优化的LSSVM网络入侵检测模型(BA-LSSVM)。首先将LSSVM参数编码为蝙蝠个体,并以网络入侵检测正确率作为参数目标优化函数,然后通过模拟蝙蝠飞行过程找到LSSVM最优参数,最后根据最优参数建立网络入侵检测模型。在Matlab2012平台采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于其它网络入侵检测模型,BA-LSSVM提高了网络入侵检测检测率,加快了网络入侵检测速度。 相似文献
7.
8.
9.
为了提高网络入侵检测的正确率,针对特征优化和训练样本选择问题,提出一种高密度的网络入侵特征检测算法。首先提取网络状态特征,然后将特征编码成为粒子的位置向量,通过粒子之间信息共享找到最优特征子集,删除冗余和无效特征,降低特征维数,最后采用模糊均值聚类算法选择最优训练样本,并通过支持向量机建立网络入侵检测器。在Matlab 2012平台上采用标准网络入侵数据库对算法性能进行测试,实验结果表明,相对于其它网络入侵检测算法,本文算法提高了网络入侵检测的正确率和检测效率,获得更加理想的网络入侵检测结果。 相似文献
10.
针对支持向量机理论中存在的问题:训练样本数量多以及必须满足MerCer条件等,提出了一种基于相关向量机(RVM)的网络入侵检测方法。首先采用“删除特征”法对KDD99数据集中的41个特征进行评级,筛选出针对不同入侵类型的重要特征和非重要特征,然后只选择重要特征进行匹配。结果表明,这种方法与基于支持向量机(SVM)的入侵检测模型相比,具有更高的检测率和更低的误警率。 相似文献
11.
12.
13.
《现代电子技术》2019,(19):68-72
为了克服当前网络入侵检测模型存在的局限性,以获得更加理想的网络入侵检测结果,设计基于特征优化的网络入侵检测模型。首先研究当前网络入侵检测建模现状,分析特征对网络入侵检测结果的影响,然后建立网络入侵检测的特征优化数学模型,通过模拟自然界生物进化的自适应遗传算法对特征优化数学模型的解进行搜索,对最优解反编码得到入侵检测的最优特征子集,最后根据最优特征子集对网络入侵检测的学习样本进行建模,设计最优的网络入侵检测模型。采用网络入侵检测的标准数据集进行仿真对比测试,文中模型的网络入侵检测平均正确率大约为95%,而当前其他网络入侵检测模型均在95%以下,同时该模型的入侵检测建模训练和检测时间大幅度减少,能够获得更优的网络入侵检测效率。 相似文献
14.
15.
16.
17.