首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了解决单帧低分辨率图像获得高分辨率图像的问题,提出了一种基于非局部均值滤波的单帧图像超分辨率算法,将图像超分辨率重建视为反问题,建立正则化模型,充分考虑图像的局部结构信息和自然图像中不同尺度的相似性冗余,加入非局部滤波.实验结果表明,文中算法从单帧图像重建的图像边缘轮廓和纹理较传统算法清楚,有效抑制了人工伪影,同时对噪声具有鲁棒性.在视觉效果及峰值信噪比上都取得良好的结果.  相似文献   

2.
针对正则化MAP(MaximumaPosterioriProbability)超分辨率算法重建结果细节不够清晰,正则化参数选取的鲁棒性较差,运算速度慢等问题,提出基于形态学边缘保持的自适应超分辨率算法。首先基于形态学定义边缘保持算子,该算子能随着迭代过程自适应调整;其次,将该算子作用于超分辨率重建的正则项,从而在图像的边缘区域加强约束重建,而在图像的平滑区域加强正则化。实验结果表明,改进算法的细节更加清晰,正则化参数的鲁棒性更好,运算速度更快。  相似文献   

3.
图像超分辨率复原是计算机视觉领域的一个基础研究方向.为提高具有高度结构化特征图像超分辨率复原效果,提出了一种基于复合正则化的超分辨率复原方法.该方法整合了多个不同种类范数的正则化项,将具有旋转不变性的方向全变分组稀疏正则化(TI-DTV)方法以及小波分析方法嵌入至目标函数中.全变分组稀疏正则化(TI-DTV)方法是一种可以有效解决高度结构化图像中直线边缘区域超分辨率复原的方法,但TI-DTV中的全变分(TV)和方向全变分(DTV)模型可能会导致图像阶梯化效应(staircase artifacts),而小波分析项则可以提高图像纹理信息的复原效果,可减小阶梯化效应的影响.为了解决不同范数下的混合正则化问题,利用一阶对偶圆锥形解法(TFOCS)的思想,推导出了一阶对偶形式的快速解法.结果表明,在真实图像集的实验中,通过与全变分、小波分析、TI-DTV等超分辨率复原方法的比较,可以明显的看出该方法结果较其他方法更清晰,对直线型结构复原效果有一定的提高,同时保留了更多的细节信息,峰值信噪比(PSNR)和结构相似性(SSIM)也有明显提高.  相似文献   

4.
根据稀疏定理,首先对遥感图像数据进行训练,得到高分辨率图像块字典与低分辨率图像块字典,然后利用低分辨率图像块字典求出稀疏表示系数,最后根据稀疏表示系数得到超分辨率重建图像.结果可以看出,经过改进后,重建图像的客观评价指标更优.  相似文献   

5.
图像超分辨率(super resolution,SR)重建技术是利用一帧或多帧低分辨率(low resolution,LR)图像的信息来重建一帧清晰的高分辨率(high resolution,HR)图像的技术,是图像处理中的研究热点。介绍了基于重建方法的图像SR技术的基本原理及数学模型,以频域方法和空域方法作为分类依据,分别阐述了图像SR重建技术的经典方法和最新进展,并对各类算法的优缺点进行了系统的分析和总结,最后指出了基于重建方法的图像SR技术的研究方向。  相似文献   

6.
基于多正则化约束的图像去运动模糊   总被引:1,自引:0,他引:1  
针对图像去运动模糊问题的病态性,已有的方法通常引入对图像的正则化约束从而缩小解空间范围使其良态化,但单一的正则化约束并不能很好地估计点扩散函数和复原原始图像。基于此,本文提出一种基于多正则化约束的图像去运动模糊方法。首先,根据图像梯度符合重尾分布的特性,采用归一化的超拉普拉斯先验项作为对图像先验约束的正则项。其次,分析描述图像运动模糊的点扩散函数的内在特性包括稀疏性和连续光滑性;同时,采用点扩散函数自身的L1范数保证其稀疏性并作为其中一项点扩散函数先验约束的正则项,采用Tikhonov正则化约束保证其连续平滑性并作为另一项点扩散函数先验约束的正则项,避免估计的点扩散函数中存在孤立的点。由于所建立的正则项虽然不可微但其是非严格凸函数,故引入辅助变量采用分裂法和交替求解法对所建能量方程进行求解,并利用小波软阈值公式求解辅助变量。本文方法对合成的运动模糊图像和实际相机抖动造成的自然模糊图像均进行实验,实验结果验证了该模型和求解算法的有效性和快速性。实验结果表明,本文方法提高了点扩散函数估计准确度,同时提高了复原图像质量,具有较好的复原效果。  相似文献   

7.
提出了一种基于机器学习的超分辨率(SR)改进算法。首先建立一个包括低分辨率(LR)图像及其相应的高分辨率(HR)图像的训练样本集,为LR图像提供了HR的图像解释。把训练集中的每一幅图像分成若干个图像块,每一个图像块作为马尔可夫随机场(MRF)模型的结点,MRF模型参数从这些训练样本中学习得到,通过对训练样本中的LR图像块进行k-均值聚类减少计算开销,并用k-均值的聚类结果提出了一种新的相容函数形式。实验结果表明,该算法是可行的,并与同类算法相比能取得较好的结果,使得SR后的图像更平滑自然。  相似文献   

8.
9.
10.
高分辨率磁共振图像对于医学诊断具有重要意义,本文提出一种多分辨率学习卷积神经网络,并应用于磁共振图像超分辨率。网络是一种新型深度残差网络,包含用于特征提取的残差单元、多分辨率上采样的反卷积层以及多分辨率学习层。设计的网络在低分辨率图像空间中实现图像超分辨率,采用多分辨率上采样实现多个残差单元信息融合并加速网络,多分辨率学习能够自适应地确定各分辨率上采样的高维特征图对磁共振图像超分辨重建的贡献度。实验表明,论文提出的方法能够很好地超分辨率重建磁共振图像,优于最新的深度学习方法。  相似文献   

11.
为提高直接捕获的图像质量,针对梯度特征只能提取水平、垂直方向信息及非下采样轮廓波变换(NSCT)提取细节信息不足的缺陷,提出一种结合Gabor变换及NSCT的超分辨率重建算法.该算法充分利用Gabor变换和NSCT的互补性,针对输入图像块的特点,采用Gabor变换来提取纹理特征,NSCT来提取轮廓特征,然后分别利用稀疏模型进行重建,最后合并成一幅高分辨率图像.由于输入图像或多或少存在模糊,在重建过程中,加入了去模糊的正则项,以消除输入模糊的影响.实验结果表明,结合两种特征的超分辨率效果与单一特征相比,能够恢复更多的细节信息,去模糊正则项也有一定的作用.本文方法与Kim提出的核岭回归及Yang提出的稀疏表示算法(SCSR)相比,主观上视觉效果更加清晰,客观上PSNR值平均提高了近2d B,说明了该算法能够有效地提高图像的质量.  相似文献   

12.
为了用一组低质量、低分辨率图像来产生高质量、高分辨率图像,提出了一种基于Perona-Malik(P-M)扩散的超分辨率图像重建方法。首先分析了lp范数的稳健性以及P-M扩散保持图像纹理和边缘的特点;将两者相结合,并加入了抑制图像明亮特征的调整项;最后给出了迭代格式进行迭代求解。实验结果表明,本文方法的峰值信噪比(PSNR)平均提高了0.85 dB,图像质量也得到了提高。  相似文献   

13.
A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR reconstruction step,a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore,we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally,the wavelet fusion is used to integrate all the registered highresolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity,and can be applied to large-dimension low-resolution images.  相似文献   

14.
针对雷达目标图像,提出一种基于阈值最小均方误差(MMSE-T)的超分辨率重建方法,并对其性能进行了分析、比较和评估.介绍和分析了雷达成像模型及常用的超分辨方法.以及MMSE-T改进算法及其具体实现方法.以MSTAR合成孔径雷达(SAR)实测图像为例,给出其超分辨结果,同时基于输出信噪比(SNR)指标,对其性能进行了比较与评估.实验表明:MMSE-T超分辨率方法在无须事先已知原始场景先验知识的情况下,可实现对原始场景的准确重建,同时具有较好的噪声抑制作用,可用于高分辨率一维距离像、合成孔径雷达、逆合成孔径雷达及实波束成像等雷达图像目标信息的开发.  相似文献   

15.
一种基于混合遗传算法的超分辨图像重构方法   总被引:3,自引:0,他引:3  
针对在航空航天遥感领域,CCD相机在对景物进行成像时,由于像元尺寸的限制,得到的图像分辨率低的问题,提出了采用混合遗传算法求解高分辨图像最优估计的方法.在相机参数已知的情况下用嵌入梯度算子的混合遗传算法从9帧由不同角度对同一景物重复拍照得到的低分辨率图像重构出1幅超分辨率图像.在模拟成像仿真实验中得到了分辨率提高4倍,信噪比优于共轭梯度方法的超分辨结果.  相似文献   

16.
针对在航空航天遥感领域中使用CCD相机对景物进行成像时,由干像元尺寸的限制导致图像分辨率低的问题,提出了采用人工神经网络映射图像重构过程非线性特性的方法。在相机参数已知的情况下,用后向误差传播(BP)神经网络融合从不同角度对同一景物重复拍照得到的多帧低分辨率图像的冗余信息,重构得到较高分辨率的图像。在模拟成像仿真实验中得到了分辨率提高4倍、信噪比接近30dB的超分辨结果。  相似文献   

17.
一种基于神经网络的超分辨图像重构方法   总被引:6,自引:2,他引:6  
针对在航空航天遥感领域中使用CCD相机对景物进行成像时,由于像元尺寸的限制导致图像分辨率低的问题,提出了采用人工神经网络映射图像重构过程非线性特性的方法.在相机参数已知的情况下,用后向误差传播(BP)神经网络融合从不同角度对同一景物重复拍照得到的多帧低分辨率图像的冗余信息,重构得到较高分辨率的图像.在模拟成像仿真实验中得到了分辨率提高4倍、信噪比接近30dB的超分辨结果.  相似文献   

18.
为解决深度卷积神经网络在人脸超分辨率任务中模型复杂并难以实际应用的问题,提出一种轻量级人脸超分辨率网络.利用残差编码块构成的编码结构进行特征提取,在解码结构中引入金字塔重建从而实现快速准确的超分辨率.为降低解码块中上采样操作的参数量,采用基于分辨率选择的非一致通道扩宽策略.为避免增加分支,通过热图损失引入人脸先验知识....  相似文献   

19.
针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法存在的重建网络浅、特征利用率低以及重建图像模糊等问题,提出基于多尺度特征映射网络的图像超分辨率重建方法. 多尺度特征映射网络通过学习低分辨率(LR)特征与高分辨率(HR)特征之间的映射关系,将多个尺度的LR特征映射到HR特征空间,通过特征融合来提高重建过程中对特征的利用率;该方法定义了结合逐像素损失、感知损失和对抗损失的联合损失函数,从低频内容、图像边缘和局部纹理等方面均衡提升重建图像质量. 对数据集Set5、Set14和BSD100的图片4倍下采样后进行测试,与当前主流方法进行比较和分析. 实验证明,基于生成对抗的多尺度特征映射网络在提高图像感知质量方面表现优秀,重建的图像具有更加清晰的边缘和纹理,在客观评价上具有较好的评分.  相似文献   

20.
给出了一种多锚点邻域回归图像超分辨率算法。首先,对单锚点超分辨率算法重建的高分辨图像进行分块,利用欧氏距离在训练图像块集合中寻找每个图像块的近邻集合。其次,根据近邻块集合中的图像块在每个锚点空间出现的频率,计算近邻图像块的分布概率,获得相关的锚点。最后,利用指数函数计算相关锚点在图像重建时的权重。仿真实验证明,改进算法与单锚点超分辨率重建算法相比,所恢复的高分辨率图像的峰值信噪比有一定提高,并且图像的边缘更加清晰,细节信息更加丰富。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号