首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Zinc oxide epilayer films were grown on vicinal cut sapphire substrates by pulsed laser deposition with in situ annealing oxygen pressures varied from 0 to 10 × 103 Pa. The best crystalline quality was obtained for ZnO layer with annealing oxygen pressure of 6 × 103 Pa. Laser induced thermoelectric voltage (LITV) were observed along the tilting angle orientation of the substrate when the pulsed KrF excimer laser of 248 nm were irradiated on the films. The largest LITV signal was measured for the film grown at 6 × 103 Pa annealing oxygen pressure. According to the measured LITV signals, Seebeck anisotropy was evaluated and was found to range from 3 to 12 μV/K for ZnO films annealed at different oxygen pressures from 2 to 10 × 103 Pa. It is suggested that oxygen ambient plays an important role in the electronic properties of the ZnO films.  相似文献   

2.
Wang Zhaoyang  Hu Lizhong 《Vacuum》2009,83(5):906-875
ZnO thin films were grown on Si (111) substrates by pulsed laser deposition (PLD) at various oxygen pressures in order to investigate the structural and optical properties of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The structural and morphological properties of the films were investigated by XRD and AFM measurements, respectively. The results suggest that films grown at 20 Pa and 50 Pa have excellent UV emission and high-quality crystallinity. The research of PL spectra indicates that UV emission is due to excitonic combination, the green band is due to the replacing of Zn in the crystal lattice for O and the blue band is due to the O vacancies.  相似文献   

3.
ZnO nanorods were produced by pulsed laser deposition (PLD). Drops of nanoparticle colloid (gold or silver) were placed on silica substrates to form growth nuclei. All nanoparticles were monocrystalline, with well-defined crystal surfaces and a negative electrical charge. The ZnO nanorods were produced in an off-axis PLD configuration at oxygen pressure of 5 Pa. The growth of the nanorods started from the nanoparticles in different directions, as one nanoparticle could become a nucleus for more than one nanorod. The low substrate temperature used indicates the absence of a catalyst during the growth of the nanorods. The diameters of the fabricated 1-D ZnO nanostructures were in the range of 50-120 nm and their length was determined by the deposition time.  相似文献   

4.
ZnO/MgO multilayer thin films were fabricated on Si (1 1 1) substrates by pulsed laser deposition (PLD) at 600 °C for 30 min. The oxygen pressure and laser repetition were kept at 20 Pa and 5 Hz, respectively. The PL measurements suggest that the UV peaks have a blue excursion of 4 nm from 379 to 375 nm, compared with ZnO films. The XRD analysis indicates that the position of ZnO (0 0 2) peaks from ZnO/MgO multilayer films have about 0.12° shift from 34.421°, that of ZnO films, to 34.545°. From TEM images, the thickness of the films is about 200 nm. By HRTEM and SAD images, the crystal phases and the polycrystalline state were observed in the multilayer films.  相似文献   

5.
We have developed the separated pulsed laser deposition (SPLD) technique to prepare high quality ZnO based films exhibiting uniform and droplet-free properties. This SPLD consists of an ablation chamber and a deposition chamber which can be independently evacuated under different ambient gases.The gas species and the pressures in both chambers can be arbitrarily chosen for the specific deposition such as nanostructured films and nanoparticles. The ablation chamber is a stainless steel globe and the deposition chamber is a quartz tube connected to a metallic conic wall with an orifice. We used a KrF excimer laser with λ = 248 nm and 25 ns pulse duration. The different gas conditions in two chambers allow us to realize optimal control of the plasma plume, the gas phase reaction and the film growth by applying the bias voltage between the conic wall and the substrate under the magnetic field. We can expect that at appropriate pressures the electric and magnetic field motion (E × B azimuthal drift velocity) gives significant influences on film growth.We have deposited ZnO thin films at various pressures of ablation chamber (Pab) and deposition chamber (Pd). The deposition conditions used here were laser fluence of 3 J/cm2, laser shot number of 30,000, Pab of 0.67-2.67 Pa (O2 or Ar), Pd of 0.399-2.67 Pa (O2), and substrate temperature of 400 °C. Particle-free and uniform ZnO films were obtained at Pab of 0.67 Pa (Ar) and Pd of 1.33 Pa (O2). The ZnO film showed high preferential orientation of (002) plane, optical band gap of 2.7 eV, grain size of 42 nm and surface roughness of 1.2 nm.  相似文献   

6.
The influence of oxygen pressure on the structural and electrical properties of vanadium oxide thin films deposited on glass substrates by pulsed laser deposition, via a 5-nm thick ZnO buffer, was investigated. For the purposes of comparison, VO2 thin films were also deposited on c-cut sapphire and glass substrates. During laser ablation of the V metal target, the oxygen pressure was varied between 1.33 and 6.67 Pa at 500 °C, and the interaction and reaction of the VO2 and the ZnO buffer were studied. X-ray diffraction studies showed that the VO2 thin film deposited on a c-axis oriented ZnO buffer layer under 1.33 Pa oxygen had (020) preferential orientation. However, VO2 thin films deposited under 5.33 and 6.67 Pa were randomly oriented and showed (011) peaks. Crystalline orientation controlled VO2 thin films were prepared without such expensive single crystal substrates as c-cut sapphire. The metal-insulator transition properties of the VO2/ZnO/glass samples were investigated in terms of electrical conductivity and infrared reflectance with varying temperatures, and the surface composition was investigated by X-ray photoelectron spectroscopy.  相似文献   

7.
PLD工艺制备高质量ZnO/Si异质外延薄膜   总被引:1,自引:0,他引:1  
采用脉冲激光沉积工艺在不同条件下以Si(111)为衬底制备了Zno薄膜.通过对不同氧压下(0~50Pa)沉积的样品的室温PL谱测试表明,氧气氛显著地提高了薄膜的发光质量,在50Pa氧气中沉积的ZnO薄膜具有最强的近带边UV发射.XRD测试说明在氧气氛中得到的薄膜结晶质量较差,没有单一的(002)取向.利用-低温(500℃)沉积的ZnO薄膜作缓冲层,得到了高质量的ZnO外延膜.与直接沉积的ZnO膜相比,生长在缓冲层上的ZnO膜展现出规则的斑点状衍射花样,而且拥有更强的UV发射和更窄的UV峰半高宽(98meV).对不同温度下沉积的缓冲层进行了RHEED表征,结果表明,在600~650℃之间生长缓冲层,有望进一步改善ZnO外延膜的质量.  相似文献   

8.
High quality transparent conductive ZnO thin films with various thicknesses were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) system on glass substrates at room temperature.The high quality of the ZnO thin films was verified by X-ray diffraction and optical measurements. XRD analysis revealed that all films had a strong ZnO (200) peak, indicating c-axis orientation. The ZnO thin films are very transparent (92%) in the near vis regions. For the ZnO thin films deposited at a pressure of 0.086 Pa (6.5 × 10−4 Torr) optical energy band gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. Urbach tail energy also decreased as the film thickness increased.Spectral dependence of the photoconductivity was obtained from measurements of the samples deposited at various thicknesses. Photoconductivities were observed at energies lower than energy gap which indicates the existence of energy states in the forbidden gap. Photoconductivities of ZnO thin films increase with energy of the light and reach its maximum value at around 2.32 eV. Above this value surface recombination becomes dominant process and reduces the photocurrent. The photoconductivity increases with decreasing the film thickness.  相似文献   

9.
Yaodong Liu 《Vacuum》2006,81(1):18-21
Polycrystalline Al-doped ZnO films with good photoluminescence property were successfully deposited on quartz glass substrates by pulsed laser deposition (PLD) at room temperature. The films were obtained by ablating a metallic target (Zn:Al 3 wt%) at various laser energy densities (1.0-2.1 J/cm2) in oxygen atmosphere (9 Pa). The structure of the films was characterized by XRD. Ultraviolet photoluminescence centered at 359-361 nm was observed in the room temperature PL spectra of the Al-doped ZnO films.  相似文献   

10.
Polycrystalline thin films of zinc oxide were deposited by pulsed laser deposition onto silicon substrates at different oxygen partial pressures in the range of 1-35 Pa. For ablation of the sintered zinc oxide target a pulsed Nd:YAG laser was used. Other processing parameters such as laser pulse energy, pulse repetition rate, substrate temperature and deposition pressure were identical. The effect of oxygen pressure on the structural properties of the films was systematically studied by using atomic force microscopy. The surface morphology, average roughness Sa, root mean square Sq, and mean size of grains on selected places with 2 × 2 μm2 area of prepared samples were evaluated. Detailed structural analysis confirmed that partial oxygen pressure leads to the modification of surface morphology. Mean grain size in height and lateral direction decreases with raising oxygen pressure from 1 to 5 Pa while the further increase of oxygen pressure from 5 to 35 Pa results in grain size enlargement. The zinc oxide film formed at oxygen partial pressure 5 Pa shows smallest values of evaluated parameters (Sa = 0.6 nm, Sq = 0.7 nm and mean size of grains 50 nm).  相似文献   

11.
采用脉冲激光沉积技术(PLD)在氧气气氛中以高纯Zn为(99.999%)靶材,在单晶硅和石英衬底表面成功生长了ZnO薄膜.通过X射线衍射仪、表明轮廓仪、荧光光谱仪、紫外可见分光光度计对合成薄膜材料的晶体结构、厚度、光学性质等进行了研究,分析了ZnO薄膜的沉积时间对其性能的影响.结果表明,采用PLD法在室温下可以制备出(002)结晶取向和透过率高于75%的ZnO薄膜,但室温下沉积的ZnO薄膜的发射性能较差,沉积时间的延长不能改善薄膜的发光性能.  相似文献   

12.
B.L. Zhu  X.H. Sun  F.H. Su  X.G. Wu  R. Wu 《Vacuum》2008,82(5):495-500
ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 °C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 °C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 °C, and the size was smallest in all samples, which may result in maximum Eg and E0 of the films. UV emission was observed only in the films grown at 200 °C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film.  相似文献   

13.
Al-doped ZnO (AZO) thin films have been prepared on glass substrates by pulsed laser deposition. The structural, optical, and electrical properties were strongly dependent on the growth temperatures. The lowest resistivity of 4.5 × 10−4 Ωcm was obtained at an optimized temperature of 350 °C. The AZO films deposited at 350 °C also had the high optical transmittance above 87% in the visible range and the low transmittance (<15% at 1500 nm) and high reflectance (∼50% at 2000 nm) in the near-IR region. The good IR-reflective properties of ZnO:Al films show that they are promising for near-IR reflecting mirrors and heat reflectors.  相似文献   

14.
ZnO deposits were obtained on electroless copper coated Si substrates using a conventional RF magnetron sputter deposition technique at room temperature. The deposition pressure was varied from 6.67 Pa to 0.667 Pa. The RF powers were from 100 to 200 W and the electrode distance was fixed at 5 cm. The ZnO deposition time was varied from 1 to 30 min. The deposits consist of ZnO nanorods and a ZnO film, with the roots of the nanorods embedded in the film. The growth of the nanorods far exceeds the growth of the film in the beginning of the deposition process. The nanorod lengthening rate then slows down and becomes lower than the film growth rate. Effects of sputter deposition parameters on the growth of ZnO nanorods/film structures were also investigated.  相似文献   

15.
High quality ZnO epilayers (χmin ∼ 10%) were prepared on Al2O3 (0 0 0 1) substrates at a temperature of 750 °C by pulsed laser deposition (PLD) with oxygen pressure of 0.015, 0.15, 1.5, and 15 Pa. The best crystalline quality and strongest intensity of UV photoluminescence were observed on ZnO layer with oxygen pressure of 15 Pa. It is probable due to the higher oxygen pressure lessens oxygen deficiency in the film. The tetragonal distortion eT, which is caused by elastic strain in the epilayer, was determined by Rutherford backscattering/channeling. It reduces as a whole (from 0.93 to 0.65%) with the increase of oxygen pressure from 0.015 to 15 Pa and the excitonic transition energy simultaneously shows a weak blue shift.  相似文献   

16.
Aluminum doped zinc oxide (ZnO:Al) films were deposited by mid-frequency sputtering rotating tube targets at high discharge powers in a double cathode system. The magnetrons located inside the tube targets were tilted by ± 30°, leading to different racetrack orientations. Deposition rate and electrical properties of statically deposited films were investigated. Different properties of ZnO:Al films show lateral variations corresponding to the racetrack positions, which shift according to the tilt angles of double magnetrons. The highest average static deposition rate and the corresponding dynamic value were up to 360 nm/min and 111 nm m/min, respectively, for magnetrons tilted towards the center of the cathodes. The material properties of the ZnO:Al film prepared in dynamic mode were found to behave like the superpositions of properties of static films at different positions. Upon wet chemical etching in diluted hydrochloric acid (HCl), the surfaces of sputtered ZnO:Al films became rough, and three typical surface structures were observed and identified on statically deposited ZnO:Al films. The related plasma physics, growth and chemical etching mechanisms were discussed.  相似文献   

17.
Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm2) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.  相似文献   

18.
Good quality transparent conducting Al-doped ZnO films were deposited on quartz substrates from a high purity target using pulsed electron deposition (PED). Two series of films were made, one deposited at room temperature but at four pressures, viz., 0.7, 1.3, 2.0 and 2.7 Pa of oxygen and one deposited at 1.3 Pa oxygen pressure but at the substrate temperature ranged from room temperature to 600 °C. In order to evaluate the effect of substrate temperature and oxygen pressure on the properties of obtained films, various characterization techniques were employed including X-ray diffraction, stylus profiler, scanning electron microscope, optical spectrophotometer and electrical resistivity. For the first series films, the optimal oxygen pressure of 1.3 Pa was found to bring about the appropriate energetic deposition atoms which results in the best crystallinity. For the second series films, the lowest resistivity was obtained in the film grown at 400 °C. An attempt was made to reduce the resistivity by lowering the oxygen pressure to 0.5 Pa which was the lower limit of working pressure of the PED system. The obtained results indicate that PED is a suitable technique for growing transparent conducting ZnO films.  相似文献   

19.
Non-polar ZnO thin films were fabricated on r-plane sapphire substrates by pulsed laser deposition at various temperatures from 100 to 500 °C. The effects of the substrate temperature on structural, morphological and optical properties of the films were investigated. Based on the X-ray diffraction analysis, the ZnO thin films grown at 300, 400 and 500 °C exhibited the non-polar (a-plane) orientation and those deposited below 300 °C exhibited polar (c-plane) orientation. In the optical properties of non-polar ZnO films, there were two photoluminescence peaks detected. The peaks (near-band edge emission, blue emission) are due to electron transitions from band-to-band and shallow donor level to valence band, respectively.  相似文献   

20.
Properties of ZnO:Al films deposited on polycarbonate substrate   总被引:1,自引:0,他引:1  
Yaodong Liu  Qiang Li  Huiliang Shao 《Vacuum》2009,83(12):1435-1437
Transparent conducting aluminum-doped zinc oxide (ZnO:Al) films have been prepared on polycarbonate (PC) substrates by pulsed laser deposition technique at low substrate temperature (room-100 °C); Nd-YAG laser with wavelength of 1064 nm was used as laser source. The experiments were performed at various oxygen pressures (3 pa, 5 pa, and 7 Pa). In order to study the influence of the process parameters on the deposited (ZnO:Al) films, X-ray diffraction and atomic force microscopy were applied to characterize the structure and surface morphology of the deposited (ZnO:Al) films. Polycrystalline ZnO:Al films having a preferred orientation with the c-axis perpendicular to the substrate were deposited with a strong single violet emission centering about 377–379 nm without any accompanying deep level emission. The average transmittances exceed 85% in the visible spectrum for 300 nm thick films deposited on polycarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号