首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
在现代数控加工中已普遍使用NURBS曲线插补,但大多数NURBS曲线插补都致力于取得恒定的进给速度而不是轮廓精度,对此,提出了基于de Boor算法的NURBS自适应插补算法.将de Boor算法应用于NURBS曲线插补中,并用限定弓高误差对插补的进给速度实行自适应调节,实现了数控加工中进给速度的平滑过渡,减少速度急剧变化时对机床的冲击,保证了NURBS曲线实时插补和轮廓加工的精度.通过仿真证明了这种插补算法的实时性和实际应用的可行性.  相似文献   

2.
在分析NURBS曲线插补原理的基础上,提出了一种基于Muller法的NURBS曲线实时插补算法。该算法首先进行速度控制,由最大进给速度约束、最大弓高误差约束和最大法向加速度约束得到希望进给步长,保证了加工精度。然后利用Muller法迭代计算满足进给步长要求的插补参数,避免了传统方法的复杂求导运算。该算法稳定性好,运算量小,能够对速度波动进行有效控制,并且能够满足实时插补的要求。  相似文献   

3.
为了解决数控刨削在刨削曲线的过程中存在的波动和表面质量问题,深入研究了功能强大的NURBS曲线插补方法、算法以及插补进给的加减速控制,并通过仿真模拟其在刨削加工中的应用,有效提高了运算速度,减小了速度波动,验证了该方法的可行性、实时性、正确性。  相似文献   

4.
基于传动系统动力学的NURBS曲线插补算法   总被引:3,自引:1,他引:2  
刘宇  赵波  戴丽  刘杰 《机械工程学报》2009,45(12):187-191
对机床传动系统、伺服驱动系统和数控插补模块进行动力学建模和求解。提出一种新的NURBS插补算法,按照进给率自适应轨迹规划算法进行当前插补周期的速度设定,并且根据曲线当前位置的曲率特性,进行基于曲率的最大速度限定,通过求解动力学模型,获得按照这一速度进行插补时系统需要的最大驱动力,若该驱动力超过系统能够提供的最大驱动力,则再次按照用户设定的加速度进行减速,获得的速度作为指令速度,按照一阶泰勒展开近似进行插补点的计算。该算法不仅在NURBS曲率较大的区域自动降低进给速度,保证要求的弦误差,而且使输出的插补速度指令区域平滑,保证不会出现插补输出的位置值系统无法进行位置控制造成更大的加工误差。  相似文献   

5.
进给速度的变化是机床产生振动和影响加工质量的重要原因之一。为了有效降低进给速率的变化率,从而达到抑制机床振动,提高加工效率和质量的目的。提出基于NURBS曲线插补方法对数控程序进行后处理,通过合理选择基函数、控制点、权因子等参数来实现拟合精度及进给速度的优化。以花瓣曲面零件作为数控加工对象,开展了NURBS曲线插补与直线圆弧插补方式的数控加工仿真与切削加工对比试验分析。结果表明,NURBS曲线插补加工方式具有减少数控加工时间,提高数控加工精度与表面质量,提升机床动态性能的优势。  相似文献   

6.
NURBS曲线数控插补方法及误差控制   总被引:2,自引:0,他引:2  
本文针对数控加工系统对空间自由曲线高速高精度加工的需求,讨论了已知型值点的三次NURBS曲线反算法,给出了求解齐次曲线的带权控制顶点的矩阵形式线性方程组,并提出相应的NURBS曲线插补算法。同时为了保证自由曲线插补精度要求,提出了进给速度能随曲线曲率自适应调整,实现高速高精度插补误差控制的方法。  相似文献   

7.
针对目前数控加工系统中直线和圆弧插补存在的不足,提出了基于NURBS曲线的非圆曲线插补算法。并在NURBS曲线建模理论基础上,借助MATLAB软件建立了非圆曲线轴的数学模型,将生成的数学模型导入到UG中生成了实体模型。利用控制弓高误差的自动调节进给速度的插补算法对工程实际中的非圆曲线进行了仿真分析。仿真结果表明,此方法达到了预期的目标。  相似文献   

8.
林峰  张正红  陈胜 《中国机械工程》2012,23(9):1060-1064
提出了一种基于进给速度敏感点识别的NURBS曲线插补算法,该方法对于兼容NURBS形式的高档数控系统至关重要。粗插补计算造成的轮廓误差与插补经过该点时的进给速度大小有关,敏感点则可根据插补微段逼近时的弓高误差来界定。进而,根据相邻敏感点之间的距离,通过增设安全缓冲区等方法,进行速度曲线自适应规划。整体进给速度曲线可以由各部分进给速度曲线连接而成。为评价算法的有效性,采用3次NURBS曲线在三种不同进给速度指令下进行仿真计算。仿真结果证明,该算法很好地将轮廓精度和进给速度的平滑性进行了系统考虑,能在相邻危险点复杂分布的情况下执行柔性的插补控制。  相似文献   

9.
针对传统直线逼近曲线插补方法引起进给速度不恒定而导致加工精度变差的问题,提出了一种基于误差控制的NURBS曲线预估-校正实时插补方法,并通过仿真分析了在NURBS曲线实时插补中,影响插补精度的参数以及影响的程度.  相似文献   

10.
数控机床NURBS曲线插补运动误差分析与仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了NURBS曲线插补算法,并指出实现NURBS曲线插补的关键是,在插补周期内由进给步长求得曲线参数的增量.分析了数字伺服运动误差产生的原因,建立了伺服系统差分方程.在不同的进给速率和曲率半径条件下,对工件轮廓误差进行了仿真.仿真结果显示,数控机床NURBS插补的轮廓误差与进给速度及给定曲线的曲率半径有关.在大的进给速率或小的曲率半径条件下,伺服滞后所引起的轮廓误差是不可忽视的因素.  相似文献   

11.
NURBS插补技术在复杂曲面数控加工中的应用   总被引:1,自引:0,他引:1  
分析了NURBS(Non-Uniform Rational B-Spline)曲线直接插补技术相对于传统数控系统中采用的直线或圆弧逼近对NURBS曲线数控编程的优越性;探讨采用NURBS曲线插补技术的CNC机床曲线曲面的加工方法以及实际应用中需要进一步解决的问题。  相似文献   

12.
高速切削加工作为模具制造中重要的一项先进制造技术,NURBS曲线插补技术逐步得到应用。在UG中通过对连结分段、角度公差、拟合公差等参数的设置以及对UGCAM后处理器的修改,生成了NURBS曲线插补指令,从而驱动CNC机床实现了NURBS曲线插补的高速加工。  相似文献   

13.
针对一种基于PLC的开放式数控系统,应用NURBS(Non-Uniform Rational B-Spline)曲线插补技术,对传统的自由曲线插补算法进行改进.同时根据STEP-NC标准对CAD/CAM/CNC一体化的新型数控插补方法进行研究,利用ActiveX技术实现了与CAD系统的数据交换,并在实验数控系统中加以应用.实验结果证明该插补算法可以有效地提高实时插补速度和精度,提高数控系统的工作效率.  相似文献   

14.
The concept of non-uniform rational B-spline (NURBS) mapping projection curves (NURBS-MPCs) is proposed in this work. A NURBS-MPC is a projection curve on a NURBS surface of a NURBS curve. The bisection method is used to interpolate NURBS-MPCs. Using an assigned chord, the interpolation of a NURBS-MPC can be obtained easily, and the milling precision of the NURBS-MPC can be controlled effectively. Based on the NURBS theory, the bisection method, and the parametric programming method, an online NURBS software package (NURBS-SP) for FANUC 0i-MB/MC/MD CNC system and an offline NURBS toolbox (NURBS-T) for Matlab have been developed. Using an example of a planar NURBS curve, a NURBS-MPC is created on a NURBS surface. The simulation and milling of the NURBS-MPC show that the bisection method is feasible and effective. The online NURBS-SP endows the NURBS interpolation function for those CNC systems only equipped with linear interpolation (G01) and circular interpolation (G02/G03) and extends the interpolation functions and machining capability of low-middle level three-axis milling machines. The interactive application of the NURBS-T and NURBS-SP can accomplish the design, simulation, and milling for NURBS-MPCs. This feature makes them to have broad application prospects in CNC machining industry.  相似文献   

15.
The design of a NURBS pre-interpolator for five-axis machining   总被引:1,自引:1,他引:0  
A non-uniform, rational B-spline (NURBS) interpolator has great advantages for free-form surface machining compared to the conventional linear/circular interpolator. However, the existing NURBS interpolators can only handle the NURBS trajectory given in a customized NURBS G code. Also, it is limited to three-axis applications. In this paper, a NURBS pre-interpolator with three function options is proposed for a computer numerical control (CNC) system so that the NURBS interpolator can be thoroughly applied for five-axis machining. The first function is called the NURBS converter function, which is used to convert a series of linear/circular segments exactly into a NURBS curve. The second function is the NURBS smoother function, by which, a series of linear segments are fitted to a NURBS curve. The third option provides two kinds of NURBS G codes definition, by which, the NURBS trajectory with five axes can be represented directly. Upon using the three options of the NURBS pre-interpolator, a unified NURBS curve can be obtained for further interpolation. Two actual machining cases are conducted to evaluate the feasibility of the proposed pre-interpolator.  相似文献   

16.
In NURBS interpolation, real-time parameter update is an indispensable step which affects not only feedrate fluctuation but also contour error. Using Taylor approximation interpolation method to find the next interpolation point causes a large feedrate fluctuation due to the accumulation and truncation errors. This paper presents a new, simple, and precise NURBS interpolator for CNC systems. The proposed interpolation algorithm does not use Taylor’s expansion, but the recursive equation of the NURBS formula. A simulation study is conducted to demonstrate the advantages of this proposed interpolator compared with those using Taylor’s equation. It is readily seen that this interpolator using the new concept of interpolation for modern CNC systems is simple and precise. The proposed method can be used for interpolating a continuous NURBS curve.  相似文献   

17.
在微段加工方式下,通常需要借助CAM(Computer Aided Manufacturing,计算机辅助)软件的后置处理将连续的加工路径离散化为大量微小直线段,并生成数控程序,数控系统则根据由微小直线段组成的加工路径进行插补和加工。但是,该方式具有加工程序量过大和需要频繁加减速来满足加工精度要求的两大不足。因此,为了实现微小直线段的高速平滑加工,提出了带权因子和一阶导数约束的NURBS曲线最小二乘逼近算法并加以了初步验证。算法的实质是将由微小直线段组成的加工路径拟合成一条连续的NURBS曲线,作为新的加工路径,然后利用NURBS实时插补对新的加工路径进行插补,实现微小直线段的高速平滑加工。经初步验证,算法有助于改善微段加工方式的加工质量和效率。  相似文献   

18.
以NURBS曲线deBoor递推插补算法为基础,针对NURBS曲线速度处理的特殊性,建立了一种NURBS曲线自适应速度控制模型,该模型分为速度自适应控制和插补前加减速处理两部分。以deBoor算法为基础对整个插补周期的弓高误差以及切向和法向加速度进行实时监控,分析了误差产生的原因并进行了相应的速度控制;以插补前直线加减速为例引入NURBS反向插补的概念,解决了NURBS曲线减速区长度计算问题。实验结果表明,该模型满足实际的NURBS曲线插补的需要。  相似文献   

19.
STEP-NC是一个新的数控编程接口,基于STEP-NC的CNC系统是未来数控技术发展方向之一.在该系统中不但具有直线和圆弧插补功能,而且还具有样条曲线插补功能.开发了一个统一的 基于NURBS样条曲线插补的通用插补器,推导出一个简洁的NURBS几何数据预处理算法,详细论述了基于等弧长的插补技术和插补原理.最后,通过仿真和实例加工验证了上述算法的有效性和可靠性.  相似文献   

20.
This paper presents a real-time control algorithm based on Taylor’s expansion for implementing variable feed rate non-uniform rational B-spline (NURBS) curve interpolators using a digital signal processor for precision CNC machining. To efficiently compute the NURBS curve and its derivatives in real-time, an effective method is proposed. The variable feed rate NURBS curve interpolator can be used to realise the ACC/DEC before feed rate interpolation in which the ACC/DEC (acceleration/deceleration) planning on the feed rate command executes before the interpolation takes place, so that the path command errors caused by conventional ACC/DEC planning using the post feed rate interpolation can be effectively eliminated. To demonstrate the performance of the proposed algorithm, an X-Y table driven by two servomotors is controlled to track command paths represented by multiple blocks of NURBS curves. Experimental results verify the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号