首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
The lead-free Sn-1.7Sb-1.5Ag solder alloy and the same material reinforced with 5 vol.% of 0.3-μm Al2O3 particles were synthesized using the powder-metallurgy route of blending, compaction, sintering, and extrusion. The mechanical properties of both monolithic and composite solders were studied by shear punch testing (SPT) at temperatures in the range of 25-130 °C. Depending on the test temperature, the shear yield stress (SYS) increased by 4.8-8.8 MPa, and ultimate shear strength (USS) increased by 6.2-8.8 MPa in the composite material. The strength improvement was mostly due to the CTE mismatch between the matrix and the particles, and to a lesser extent to the Orowan strengthening mechanism of the submicro-sized Al2O3 particles in the composite solder. The contribution of each of these mechanisms was used in a modified shear lag model to predict the total composite-strengthening achieved.  相似文献   

2.
In order to study the significance of as-sintered surfaces for the strength of Si3N4 micro components, micro bending specimens with dimensions of 240 μm × 240 μm × 1400 μm were prepared from sintered reaction-bonded silicon nitride. The processing parameters sintering temperature and dwell time were varied, and two different types of powder bed were applied during sintering. The characteristic strength σ0 - determined by micro-3-point-bending tests - varied from about 500 to 1200 MPa. Strength values of about 1000 MPa and higher were observed when powder beds were applied which were newly prepared and doped with the sintering additives Y2O3, Al2O3, and MgO. In that case, the mass loss during sintering was negligible or even a small mass gain occurred. Samples sintered in used and undoped powder beds by contrast showed mass loss and an enrichment of the secondary phase YN-melilite (Y2Si3O3N4) at the surface; for these samples σ0 was found to be restricted to about 500-700 MPa.Contrary to expectations, it was observed that the residual porosity - ranging from less than 1% up to 11% - does not act as a predominant strength-determining factor. Instead, the more or less pronounced formation of surface-near defects, due to the decomposition and volatilization of Si3N4 during sintering, is considered to be decisive for the achievable strength. Mass loss and YN-melilite formation are indicators for defect creating reactions. Due to the increased surface-to-volume ratio of micro components, the affected surface zone in particular determines the overall mechanical properties.  相似文献   

3.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

4.
This paper studied the effect of quenching mode on the mechanical properties of a Zr64Al10Ni15Cu11 metallic glass. It has been shown that the specimen through annealing and water quenching treatments has a higher strength of 1698 MPa than the specimen without annealing treatment (with a strength of 1572 MPa) due to the presence of nanocrystals in the amorphous matrix, which act as obstacles to the shear bands movement during deformation and thus improve the strength. It has also been shown that the specimen through annealing and air quenching treatments has a lower strength of 1119 MPa than the specimen without annealing treatment (with a strength of 1572 MPa) due to the heterogeneous distribution of the internal stress, which induces the crack initiations and catastrophic failure at a rather low external applied stress.  相似文献   

5.
The (AlN, TiN)-Al2O3 composites were fabricated by reaction sintering powder mixtures containing 10-30 wt.% (Al, Ti)-Al2O3 at 1420-1520°C in nitrogen. It was found that the densification and mechanical properties of the sintered composites depended strongly on the Al, Ti contents of the starting powder and hot pressing parameters. Reaction sintering 20 wt.% (Al, Ti)-Al2O3 powder in nitrogen in 1520°C for 30 min yields (AlN, TiN)-Al2O3 composites with the best mechanical properties, with a hardness HRA of 94.1, bending strength of 687 MPa, and fracture toughness of 6.5 MPa m1/2. Microstructure analysis indicated that TiN is present as well dispersed particulates within a matrix of Al2O3. The AlN identified by XRD was not directly observed, but probably resides at the Al2O3 grain boundary. The fracture mode of these composites was observed to be transgranular.  相似文献   

6.
The processing and mechanical behaviors of Al2O3-xwt.%SiC (x = 1, 2, 5, ASx) nano-composites prepared by the in situ synthesis of SiC from polycarbosilane (PCS) were investigated. The composites were densified by hot pressing. The microstructure and mechanical properties of the sintered composites were analyzed. The results showed that a fully dense structure was obtained when a few nano-SiC were doped and that the fracture toughness and strength were highly improved compared with those of monolithic Al2O3. The fracture toughness reached 5.1 MPa m1/2 in AS2 composite. The maximum flexural strength was 516 MPa obtained in AS1 composite.  相似文献   

7.
Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2 and Cr2O3 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized, and the results showed that the Rockwell hardness, flexural strength and fracture toughness of the composites increased as the Cr2O3 content increased. When the Cr2O3 content was 2.5 wt%, the flexural strength and the fracture toughness attained peak values of 925 MPa and 8.55 MPa m1/2, respectively. This improvement of mechanical properties was due to the more homogeneous and finer microstructure developed from the addition of Cr2O3 and an increase in the ratio of α2-Ti3Al to γ-TiAl matrix phases.  相似文献   

8.
?enol Y?lmaz 《Vacuum》2005,77(3):315-321
In this study, Al2O3 and Al2O3-13 wt% TiO2 were plasma sprayed onto AISI 316L stainless-steel substrate with and without Ni-5 wt% Al as bond coat layer. The coated specimens were characterized by optical microscopy, metallography and X-ray diffraction (XRD). Bonding strength of coatings were evaluated in accordance with the ASTM C-633 method. It was observed that the dominant phase was Al2O3 for both coatings. It was also found that the hardness of coating with bond coat was higher than that of coating without bond coat. Metallographic studies revealed that coating with bond coating has three different regions, which are the ceramic layer (Al2O3 or Al2O3-13 wt% TiO2), the bond coating, and matrix, which is not affected by coating. The coating performed by plasma-spray process without bond coating has two zones, the gray one indicating the ceramic layer and the white one characterizing the matrix. No delamination or spalling was observed in coatings. However, there are some pinholes in coating layer, but they are very rare. The bonding strength of coatings with bond coat was higher than that of coating without bond coat. The strength of adhesion and cohesion was determined by means of a planemeter. It was seen that percentage of cohesion strength was higher than that of adhesion strength.  相似文献   

9.
Some important problems associated with cast metal matrix composites (MMCs) include non-uniformity of the reinforcement particles, high porosity content, and weak bonding between reinforcement and matrix, which collectively result in low mechanical properties. Accumulative roll bonding (ARB) process was used in this study as a very effective method for refinement of microstructure and improvement of mechanical properties of the cast Al/10 vol.% Al2O3 composite. The average particle size of the Al2O3 was 3 μm. The results revealed that the microstructure of the composite after eleven cycles of the ARB had an excellent distribution of alumina particles in the aluminum matrix without any noticeable porosity. The results also indicated that the tensile strength and elongation of the composites increased as the number of ARB cycles increased. After eleven ARB cycles tensile strength and elongation values reached 158.1 MPa and 7.8%, which were 2.54 and 2.36 times greater than those of the as-cast MMC, respectively.  相似文献   

10.
High temperature fatigue (R=0) damage and deformation behaviors of SUS304 steel thermally sprayed with Al2O3/NiCr coating were investigated using an electronic speckle pattern interferometry (ESPI) method. Surface cracks and delamination occurred after 1×105 cycles test when σmax was 202 MPa at 873 K. The lengths and number of cracks and delamination largely decreased when σmax or temperature decreased to 115 MPa or 573 K, respectively. Strain values along cracks measured with the ESPI method were much larger than other areas due to crack opening under the tensile load. The positions of strain concentration zones on strain distribution figures by ESPI method were well corresponded to those of cracks on sprayed coatings. Strain values decreased largely where local delamination occurred.  相似文献   

11.
Cobalt-coated Al2O3 and TiC powders were prepared using an electroless method to improve resistance to thermal shock. The mixture of cobalt-coated Al2O3 and TiC powders (about 70 wt.% Al2O3-Co + 30 wt.% TiC-Co) was hot-pressed into an Al2O3-TiC-Co composite. The thermal shock properties of the composite were evaluated by indentation technique and compared with the traditional Al2O3-TiC composite. The composites containing 3.96 vol.% cobalt exhibited better resistance to crack propagation, cyclic thermal shock and higher critical temperature difference (ΔTc). The calculation of thermal shock resistance parameters (R parameters) shows that the incorporation of cobalt improves the resistance to thermal shock fracture and thermal shock damage. The thermal physic parameters are changed very little but the flexure strength and fracture toughness of the composites are improved greatly by introducing cobalt into Al2O3-TiC (AT) composites. The better thermal shock resistance of the composites should be attributed to the higher flexure strength and fracture toughness.  相似文献   

12.
D.Y. Gao  R.S. Guo 《Materials Letters》2010,64(5):573-8900
The influences of P2O5 doping on the sintering behavior, phase formation and properties of barium zirconate ceramics were investigated. Unmodified BaZrO3 was difficult to densify, even at 1600 °C. Only a porous microstructure could be obtained. However, doping BaZrO3 with P2O5 markedly enhances its sinterability. 94.2% of theoretical density was achieved with the inclusion of 4 mol% P2O5 sintered at 1600 °C for 4 h. The bending strength of the samples sintered at 1600 °C for 4 h was improved by almost 8 times by the addition of 4 mol% P2O5. The average bending strength of 152.3 ± 16.7 MPa was obtained. The Vickers hardness of 4 mol% P2O5 modified BaZrO3 reaches 8.8 ± 0.4 GPa.  相似文献   

13.
The syntheses of lightweight geopolymeric materials from highly porous siliceous materials viz. diatomaceous earth (DE) and rice husk ash (RHA) with high starting SiO2/Al2O3 ratios of 13.0-33.5 and Na2O/Al2O3 ratios of 0.66-3.0 were studied. The effects of fineness and calcination temperature of DE, concentrations of NaOH and KOH, DE to RHA ratio; curing temperature and time on the mechanical properties and microstructures of the geopolymer pastes were investigated. The results indicated that the optimum calcination temperature of DE was 800 °C. Increasing fineness of DE and starting Na2O/Al2O3 ratio resulted in an increase in compressive strength of geopolymer paste. Geopolymer pastes activated with NaOH gave higher compressive strengths than those with KOH. The optimum curing temperature and time were 75 °C and 5 days. The lightweight geopolymer material with mean bulk density of 0.88 g/cm3 and compressive strength of 15 kg/cm2 was obtained. Incorporation of 40% RHA to increase starting SiO2/Al2O3 and Na2O/Al2O3 ratios to 22.5 and 1.7 and enhanced the compressive strength of geopolymer paste to 24 kg/cm2 with only a marginal increase of bulk density to 1.01 g/cm3. However, the geopolymer materials with high Na2O/Al2O3 (>1.5) were not stable in water submersion.  相似文献   

14.
Core-shell structured HAp-(t-ZrO2)/Al2O3-(m-ZrO2) composites were fabricated using a multi extrusion process. The shell of Al2O3-(m-ZrO2) phases was selected due to their excellent biocompatibility and mechanical properties and the core was designed with t-ZrO2 dispersed in the HAp matrix. The t-ZrO2 and m-ZrO2 particles (< 400 nm) were homogeneously dispersed in the HAp and Al2O3 phases, respectively. In the HAp-(t-ZrO2) core region, a heavy strain field contrast was observed due to the mismatch of their thermal expansion coefficients. The values of relative density, bending strength and Vickers hardness of the third pass fibrous HAp-(t-ZrO2)/Al2O3-(m-ZrO2) composites, which were sintered at 1400 °C, were about 93%, 169 MPa, and 792 Hv, respectively.  相似文献   

15.
In situ composites of TiAl reinforced with Al2O3 particles are successfully synthesized from an elemental powder mixture of Ti, Al and Nb2O5 by the hot-press-assisted reaction synthesis (HPRS) method. The as-prepared composites are mainly composed of TiAl, Al2O3, NbAl3, as well as small amounts of the Ti3Al phase. The in situ formed fine Al2O3 particles tend to disperse on the matrix grain boundaries of TiAl resulting in an excellent combination of matrix grain refinement and uniform Al2O3 distribution in the composites. The Rockwell hardness and densities of TiAl based composites increase gradually with increasing Nb2O5 content, and the flexural strength and fracture toughness of the composites have the maximum values of 634 MPa and 9.78 MPa m1/2, respectively, when the Nb2O5 content reaches 6.62 wt.%. The strengthening mechanism was also discussed.  相似文献   

16.
The influence of metal volume fraction on the mechanical properties of Al2O3/Al composites with constant diameter of metal ligaments was studied. Alumina/aluminum composites with interpenetrating networks and metal content between 12 and 34 vol.% were fabricated by gas-pressure infiltration technique. The fabricated composites exhibited good mechanical properties, e.g. the bending strength of 740 MPa for samples containing 12 vol.% of Al. The bending strength of the composites decreased with increasing volume fraction of metal phase. High strength of the fabricated composites was explained by strong interfacial bonding between alumina and aluminum. The fracture toughness of the composites increased, however, with increasing volume fraction of aluminum. The highest fracture toughness values of 6 MPa m were measured for the composites containing 25 vol.% of Al. Fractographic analysis of fractured surfaces showed deformed metal ligaments which demonstrated that crack bridging by plastic deformation of the metal phase is the main toughening mechanism in Al2O3/Al composites.  相似文献   

17.
Layers of lanthanum titanate (La2Ti2O7) and α-alumina (α-Al2O3) were employed to form a layered composite in order to improve the fracture toughness of monolithic alumina. The composites were produced by two different processing methods. In the first, individually presintered pellets of α-Al2O3 and La2Ti2O7 were stacked together and hot-forged. In the second, tape cast molten salt La2Ti2O7 and dense α-Al2O3 were stacked together and hot-forged. The forged composite samples were investigated by optical microscopy, scanning electron microscopy (SEM), Vickers indentation and three-point bending. During the hot-forging process, an interphase, aluminum titanate (Al2TiO5) was found to form as a result of the reaction between α-Al2O3 and La2Ti2O7. The flexural strength and the fracture toughness of the resulting laminate composites were found to be 320 MPa and 7.1 MPa m1 / 2, respectively. Indentation experiments showed that the newly formed Al2TiO5 at the interface is sufficiently weak to promote crack deflection and hence increase the fracture energy and mechanical properties of the composite.  相似文献   

18.
Polyimide (PI) nanocomposites with different proportions of Al2O3 were prepared via two-step reaction. Silicon nitride (Si3N4) was deposited on PI composite films by a RF magnetron sputtering system and used as a gas barrier to investigate the water vapor transmission rate (WVTR). The thermal stability and mechanical properties of a pure PI film can be improved obviously by adding adequate content of Al2O3. At lower sputtering pressure (4 mTorr), the PI/Al2O3 hybrid film deposited with Si3N4 barrier film exhibits denser structure and lower root mean square (RMS) surface roughness (0.494 nm) as well as performs better in preventing the transmission of water vapor. The lowest WVTR value was obtained from the sample, 4 wt.%Al2O3-PI hybrid film deposited with Si3N4 barrier film with the thickness of 100 nm, before and after bending test. The interface bonding, Al-N and Al-O-Si, was confirmed with the XPS composition-depth profile.  相似文献   

19.
Influence of dry frictional loading on damage behaviour, bending strength and surface residual stresses of Al2O3 ceramics The present contribution gives results of dry friction tests of an Al2O3‐plate against pellets made of grey cast iron. The influence of the frictional loading on the damage and fracture behaviour as well as on the surface residual stresses within the ceramic plate are presented and discussed. Furthermore FEM simulations of the friction system are given. The damage of the Al2O3 is mainly determined by the friction induced heat flux dQ/dt. At dQ/dt values higher than 1.3 kJ/s small radial surface cracks within the friction area occur. The location of crack initiation as well as the direction of crack propagation are predicted correctly by the FEM analysis. Increasing dQ/dt lead to additional tangential cracks connecting the initial radial cracks and, consequently, leading to a fragmentation of the alumina plate. The thermally induced radial cracks show a transcrystalline, the secondary radial cracks a mainly intercrystalline crack path. The occurrence of fine radial cracks is connected with a decrease of the bending strength of the Al2O3 of about 20%. After one friction cycle a bimodal strength distribution is observed. In spite of the fact that cyclic frictional loading does not alter the macroscopic damage behaviour with respect to one cycle, it leads to a more unimodal distribution of the residual strength. The residual stress state changes from compressive surface stresses in the as‐received state to biaxial tensile residual stresses with strong gradients after frictional loading.  相似文献   

20.
Al2O3/3Y-TZP (30 vol.%) composite was pressurelessly sintered with addition of TiO2MnO2 and/or CaOAl2O3SiO2 glass. It was found that TiO2MnO2 addition greatly enhanced the densification of the composite by the formation of a low-viscosity liquid at sintering temperature. In contrast, the high-viscosity liquid formed by CaOAl2O3SiO2 glass improved mechanical properties because of its repressing effect on grain growth. The composite could be obtained at a temperature as low as 1400°C by co-doping with TiO2MnO2 and CAS glass. Bending strength of 552±64 MPa and fracture toughness of 6.03±0.22 MPa m1/2 were obtained with a doping level of 2 wt.% TiO2MnO2 and 2 wt.% CAS glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号