首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giant magnetoresistance (GMR) effect in cobalt based pseudo spin-valves (SV) is combined with the inverse magnetostriction in sensors of mechanical strain. SV with Co/Au/Co core structure were deposited onto the flexible 125 μm thick polyimide substrates. The influence of magnetostriction on GMR was studied in bending current-in-plane configuration. Total relative strain was between −8.6 × 10−3 (compression) and 8.6 × 10−3 (tension). SV were designed with respect to the oscillating nature of exchange coupling force vs. spacer thickness. The period of oscillations is not changing under the applied stress in our experimental configuration. From the magnetoresistance ratio vs. strain dependences it follows that the output signal of the strained sensor vs. unloaded one could be improved by a proper choice of the spacer thickness ts. If ts = 4 nm the relative output is 36% and for ts = 2.4 nm it is 34%, however, in this case only in the half range of the strain between 0 and ±8.6 × 10−3. For ts = 2.2 nm the relative output is only 10%.  相似文献   

2.
T.J. Zhu  X.B. Zhao 《Thin solid films》2006,515(4):1445-1449
Ferroelectric/shape memory alloy thin film multilayered heterostructures possess both sensing and actuating functions and are considered to be smart. In this article, Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectric thin films and Ti-riched TiNi shape memory alloy thin films have been deposited on Si and SiO2/Si substrates in the 400-600 °C temperature range by pulsed laser deposition technique. Deposition processing, microstructure and surface morphology of these films are described. The TiNi films deposited at 500 °C had an austenitic B2 structure with preferred (110) orientation. The surfaces of the films were very smooth with the root-mean-square roughness on a unit cell level. The structure of the TiNi films had a significant influence on that of the subsequently deposited PZT films. The single B2 austenite phase of the TiNi favored the growth of perovskite PZT films. The PZT/TiNi heterostructures with the PZT and TiNi films respectively deposited at 600 and 500 °C exhibited a polarization-electric field hysteresis behavior with a leakage current of about 2 × 10− 6 A/cm2.  相似文献   

3.
The deformation behavior of a Ti40 titanium alloy was investigated with compression tests at different temperatures and strain rates to evaluate the activation energy and to establish the constitutive equation, which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The tests were carried out in the temperature range between 900 and 1100 °C and at strain rates between 0.01 and 10 s−1. Hot deformation activation energy of the Ti40 alloy was calculated to be about 372.96 kJ/mol. In order to demonstrate the workability of Ti40 alloy further, the processing maps at strain of 0.5 and 0.6 were generated respectively based on the dynamic materials model. It is found that the dynamic recrystallization of Ti40 alloy occurs at the temperatures of 1050-1100 °C and strain rates of 0.01-0.1 s−1, with peak efficiency of power dissipation of 64% occurring at about 1050 °C and 0.01 s−1, indicating that this domain is optimum processing window for hot working. Flow instability domains were noticed at higher stain rate (≥1 s−1) and stain (≥0.6), which located at the upper part of the processing maps. The evidence of deformation in these domains has been identified by the microstructure observations of Ti40 titanium alloy.  相似文献   

4.
Bi2Se3 thin films were deposited on the (100) oriented Si substrates by pulsed laser deposition technique at different substrate temperatures (room temperature −400 °C). The effects of the substrate temperature on the structural and electrical properties of the Bi2Se3 films were studied. The film prepared at room temperature showed a very poor polycrystalline structure with the mainly orthorhombic phase. The crystallinity of the films was improved by heating the substrate during the deposition and the crystal phase of the film changed to the rhombohedral phase as the substrate temperature was higher than 200 °C. The stoichiometry of the films and the chemical state of Bi and Se elements in the films were studied by fitting the Se 3d and the Bi 4d5/2 peaks of the X-ray photoelectron spectra. The hexagonal structure was seen clearly for the film prepared at the substrate temperature of 400 °C. The surface roughness of the film increased as the substrate temperature was increased. The electrical resistivity of the film decreased from 1 × 10−3 to 3 × 10−4 Ω cm as the substrate temperature was increased from room temperature to 400 °C.  相似文献   

5.
A novel nano-carbon electron emitter film has been developed on a stainless steel substrate by a direct current plasma chemical vapor deposition system. Samples grown at temperatures of 900 °C and 1100 °C showed different surface morphologies. It is found that a two-step growth process established by combining these two temperature growths together is suitable for deposition of a high density emitter array film. The as-grown nano-carbon film indicates a carbon nanoneedle and carbon nanowall mixture film, where the needle array density is about 3 × 107/cm2. The I-V characteristic shows an emission current density of 228 mA/cm2 at 2.5 V/μm, and the field emission current is stable, making it possibly suitable for developing field emission devices.  相似文献   

6.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

7.
The tetragonal gillespite type SrCuSi4O10 (SCS) was prepared by the conventional solid-state ceramic route. The SCS sintered at 1100 °C/6 h showed εr = 4.0 and tan δ = 1.1 × 10−3 at 5 GHz. The SCS has poor sinterability and the addition of lithium magnesium zinc borosilicate glass (20: Li2O, 20: MgO, 20: ZnO, 20: B2O3, 20: SiO2) lowered the sintering temperature and improved densification. The SCS ceramic with 5 wt.% LMZBS glass sintered at 900 °C has εr = 5.0 and tan δ = 1.9 × 10−3 at 5 GHz. The composite is chemically compatible with the common electrode material silver.  相似文献   

8.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

9.
ITO thin films deposited by advanced pulsed laser deposition   总被引:1,自引:0,他引:1  
Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 °C), pressure (1-6 × 10− 2 Torr), laser fluence (1-4 J/cm2) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 °C on a large area (5 × 5 cm2). The films have electrical resistivity of 8 × 10− 4 Ω cm at RT, 5 × 10− 4 Ω cm at 180 °C and an optical transmission in the visible range, around 89%.  相似文献   

10.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

11.
Fluorine-doped tin oxide (FTO) films were prepared at different substrate temperatures by ultrasonic spray pyrolysis technique on glass substrates. Among F-doped tin oxide films, the lowest resistivitiy was found to be 6.2 × 10− 4 Ω-cm for a doping percentage of 50 mol% of fluorine in 0.5 M solution, deposited at 400 °C. Hall coefficient analyses and secondary ion mass spectrometry (SIMS) measured the electron carrier concentration that varies from 3.52 × 1020 cm− 3 to 6.21 × 1020 cm− 3 with increasing fluorine content from 4.6 × 1020 cm− 3 to 7.2 × 1020 cm− 3 in FTO films deposited on various temperatures. Deposition temperature on FTO films has been optimized for achieving a minimum resistivity and maximum optical transmittance.  相似文献   

12.
Sol-gel grown polycrystalline Al doped zinc oxide (AZO) thin films have been deposited on Si wafers, microscopy slide glass and fluorine doped tin oxide coated glass substrates using the spin coating technique. The atomic ratio of Al:Zn in the films is 0.2. From the X-ray diffraction investigations it is found that the preferential growth of (100) reflection peak has taken place in the 450, 550 and 600 °C annealed films. Scanning electron microscopic study has shown that the films contain well-defined grains arranged in a closely packed array. The resistivity of the 500 °C annealed film is measured to be 5 × 10 1 Ω cm. The films have exhibited excellent optical transmittance (~ 90%) in the 400-1100 nm wavelength range. Refractive indices (n = 1.9-1.95) of the films on Si wafer are independent of the annealing temperature. Thickness of the films produced at 4000 rpm is in the range of 58-62 nm. The refractive index and thickness of these films are nearly appropriate to cause destructive interference after reflection from front emitters of solar cells. These films have demonstrated a reflectivity value of about 3% at a wavelength of 700 nm. The AZO coated silicon solar cells possess Voc and Isc values of 573 mV and 237 mA, respectively.  相似文献   

13.
Extrusion properties of a Zr-based bulk metallic glass   总被引:1,自引:0,他引:1  
G.S. Yu  W. Li  C.E. Wen 《Materials Letters》2009,63(15):1317-1319
The extrusion behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glasses in the supercooled liquid region was investigated. Good extrusion formability was observed under low strain rates at temperatures higher than 395 °C. The metallic glasses were fully extruded without crystallization and failure within the range of T = 395-415 °C under strain rates from 5 × 10− 3 s− 1 to 5 × 10− 2 s− 1, and the deformation behavior of the metallic glasses during the extrusion was found to be in a Newtonian viscous flow mode by a strain rate sensitivity of 1.0.  相似文献   

14.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

15.
C. Guillén 《Thin solid films》2006,515(2):640-643
Aluminum-doped zinc oxide thin films have been deposited by DC and MF magnetron sputtering from a ceramic oxide target in argon atmosphere without direct heating of the substrates. The samples were prepared at different predetermined conditions of input power or discharge voltage and the influence upon electronic, optical, and microstructural properties has been investigated. The as-deposited layers show low resistivity, such as 9 × 10− 4 Ω cm minimum for DC excitation and 1.2 × 10− 3 Ω cm for MF mode, with growth rates up to 130 nm/min, and resulting substrate temperatures always below 200 °C. Low resistivity of the films is combined with high transmission, 85-90% in the visible wavelength range (400-800 nm). A strong (002) texture perpendicular to the substrate has been found, with lower strain for DC than for MF sputtering.  相似文献   

16.
We report on the Sb induced modifications of the morphology of self assembled Ge/Si(100) quantum dot stacks in a Si matrix grown by a molecular beam epitaxy. It is shown that the size of the quantum dots in the stack and the Si spacer layer uniformity inside the stack are regulated by the amount of deposited Sb. We consider the thin Sb layer at the Ge/Si growth interface as a factor limiting the surface migration of Si and Ge ad-atoms. The surface diffusion coefficients of Si ad-atom on uncovered pyramid shaped Ge island and on a Ge island covered by a single monolayer of Sb are estimated to be 2.4 μm2s−1 and 2.3 × 10−4 μm2s−1 at a temperature of 600 °C, correspondingly. Based on this remarkable reduction of surface diffusion the morphology of the surface can be preserved when the growth is continued after the single monolayer of Sb is at the surface.  相似文献   

17.
In this paper, an adaptive fuzzy-neural network model has been established to model the constitutive relationship of Ti–25V–15Cr–0.2Si alloy during high temperature deformation. The network integrates the fuzzy inference system with a back-propagation learning algorithm of neural network. The experimental results were obtained at deformation temperatures of 900–1100 °C, strain rates of 0.01–10 s−1, and height reduction of 50%. After the training process, the fuzzy membership functions and the weight coefficient of the network can be optimized. It has shown that the predicted values are in satisfactory agreement with the experimental results and the maximum relative error is less than 10%. It proved that the fuzzy-neural network was an easy and practical method to optimize deformation process parameters.  相似文献   

18.
Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10−10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10−5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 1015 cm−3 at 200 °C to 6.06 × 1016 cm−3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV and CV characteristics after which the quality of the contacts deteriorates with increase in annealing temperature.  相似文献   

19.
The deformation behaviour of Zr65Cu20Fe5Al10 bulk metallic glass has been studied at room temperature under uniaxial compression conditions at the strain rate of 5 × 10−4 s−1 and performing jump tests for the strain rates (SR) ranging between 5 × 10−6 s−1 and 5 × 10−2 s−1. The alloy always shows the formation of shear bands and exhibits serrated flow. In the SR range of 5 × 10−6 to 5 × 10−3 s−1 absence of strain rate sensitivity within the experimental error is observed. However, when the SR changes from 5 × 10−3 s−1 to 5 × 10−2 s−1 the alloy exhibits a negative strain rate sensitivity of −0.0026. The number of shear bands on the side view appears to be correlated with the range of stress softening from the maximum stress to the stress at which the sample fails.  相似文献   

20.
We have deposited Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films on nickel foils to create film-on-foil capacitor sheets. Measurements with PLZT films on LaNiO3-buffered Ni foils yielded the following: relative permittivity ≈ 1300 and dielectric loss (tan δ) ≈ 0.05, leakage current density of 6.6 × 10 9 A/cm2 (at 25 °C) and 1.4 × 10 8 A/cm2 (at 150 °C), and mean breakdown field strength > 2.4 MV/cm. Based on the hysteresis loop measurement, an energy storage density of ≈ 17 J/cm3 was obtained for such a capacitor at 50% of the mean breakdown field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号