首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this work, we introduce a new modified approach to the formation of interdigital transducer (IDT) structures on an AlGaN/GaN heterostructure. The approach is based on a shallow recess-gate plasma etching of the AlGaN barrier layer in combination with “in-situ” SF6 surface plasma treatment applied selectively under the Schottky gate fingers of IDTs. It enables one to modify the two-dimensional electron gas (2DEG) density and the surface field distribution in the region of the IDTs, as is needed for the excitation of a surface acoustic wave (SAW). The measured transfer characteristics of the plasma-treated SAW structures revealed the excitation of SAW at zero bias voltage due to fully depleted 2DEG in the region of the IDTs. High external bias voltages are not necessary for SAW excitation. SIMS depth distribution profiles of F atoms were measured to discuss the impact of SF6 plasma treatment on the performance of the AlGaN/GaN-based IDTs.  相似文献   

2.
A method of defectless dry etching of an AlGaN barrier layer is proposed, which consists in repeated plasmachemical oxidation of AlGaN and removal of the oxide layer by means of reactive ion etching in inductively coupled BCl3 plasma. Using the proposed etching technology, AlGaN/AlN/GaN high-electron-mobility transistors (HEMTs) with a buried gate have been successfully fabricated for the first time. It is shown that the currents of obtained HEMTs are independent of the number of etching cycles, while the gate operating point shifts toward positive voltages up to obtaining transistors operating in the enhancement mode.  相似文献   

3.
We present the realization of high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures, which were grown on silicon substrates using an ultrathin SiC transition layer. The growth of AlGaN/GaN heterostructures on 3C-SiC(111)/Si(111) was performed using metalorganic chemical vapour deposition (MOCVD). The 3C-SiC(111) transition layer was realized by low pressure CVD and prevented Ga-induced meltback etching and Si-outdiffusion in the subsequent MOCVD growth. The two-dimensional electron gas (2DEG) formed at the AlGaN/GaN interface showed an electron sheet density of 1.5 × 1013 cm− 3 and a mobility of 870 cm2/Vs. The HEMTs DC and RF characteristics were analysed and showed a peak cut-off frequency as high as 29 GHz for a 250 nm gate length.  相似文献   

4.
The results of the optimization of the ammonia MBE technology of AlN/AlGaN/GaN/AlGaN heterostructures for high-power microwave field-effect transistors (FETs) are presented. The creation of technological systems of the EPN type for the deposition of group III nitrides by ammonia MBE, in combination with the development of optimum growth and postgrowth processes, make it possible to obtain AlN/AlGaN/GaN/AlGaN based heterostructures for high-power microwave FETs with the output static characteristics on the world best level. One of the main fields of application of the semiconductor heterostructures based on group III nitrides is the technology of high electron mobility transistors (HEMTs). Most investigations in this field have been devoted to the classical GaN/AlGaN structures with a single heterojunction. An alternative approach based on the use of double heterostructures with improved two-dimensional electron gas (2DEG) confinement offers a number of advantages, but such structures are usually characterized by a lower carrier mobility as compared to that in the single-junction structures. We succeeded in optimizing the double heterostructure parameters and growth conditions so as to obtain conducting channels with a 2DEG carrier mobility of 1450, 1350, and 1000 cm2/(V s) and a sheet electron density of 1.3 × 1013, 1.6 × 1013, and 2.0 × 1013 cm?2, respectively. Experimental HEMTs with 1-μm-long gates based on the obtained multilayer heterostructure with a doped upper barrier layer exhibit stable current-voltage characteristics with maximum saturation current densities of about 1 A/mm and a transconductance of up to 180 mS/mm.  相似文献   

5.
This work reports on the latest results of etching of different Al x Ga1?x N/GaN heterostructures in relation to percentage composition of aluminum. The etching processes were carried out in a reactive ion etching (RIE) system using the mixture of BCl3/Cl2/Ar. The topography of the heterostructures surfaces and the slope were controlled using atomic force microsopy (AFM) technique. The photoluminescence spectra were used to determine the surface damage and to calculate the Al content in AlGaN/GaN heterostructures commonly used for high electron mobility transistors (HEMTs) fabrication.  相似文献   

6.
ZnO layer in a role of passivation of the AlGaN/GaN-based high electron mobility transistors (HEMTs) is presented. The thin layer is deposited by pulsed laser deposition technique. It is fully compatible with the process technology of high electron mobility transistors prepared on AlGaN/GaN heterostructures due to its physical properties similar to the GaN. We have succeeded to (1) suppress the gate leakage current; (2) increase the maximum of the drain current and the electron drift mobility, and (3) ensure the threshold voltage to be unaltered by employment of the thin ZnO layer to the channel area of the HEMT.  相似文献   

7.
研究了不同的干法刻蚀以及氧气等离子体处理条件对AlGaN表面特性的影响。在合适的条件下,氧气等离子体处理可以使AlGaN表面发生氧化,并使肖特基接触的反向漏电流降低两个数量级,反向击穿电压也有显著提高。该方法简单易行,可应用于制备高性能的AlGaN/GaN HEMT器件。  相似文献   

8.
We demonstrate the excellent performance of a 140 W AlGaN/GaN HEMT in the C-band, which is passivated by a Cat-CVD SiN film. The interface trap density of the AlGaN surface passivated by Cat-CVD film after NH3 treatment is 3 × 1012 cm− 2, which is the smallest of investigated deposition techniques. The lowest interface trap density achieved by the Cat-CVD technique makes it possible to operate the AlGaN/GaN HEMT in the C-band. We clarify that the Cat-CVD technique is necessary for developing future amplifiers.  相似文献   

9.
对AlGaN/GaN HEMT栅槽低损伤刻蚀技术进行研究,通过加入小流量的具有钝化缓冲作用的C2H4,对Cl2/Ar/C2H4的工艺条件进行了优化,有效地降低了栅槽刻蚀造成的AlGaN表面损伤和器件退化,同时防止反应生成物淀积在栅槽表面,改善了肖特基结特性,提高了栅极调控能力,实现凹栅槽的低损伤刻蚀.  相似文献   

10.
GaN mesa etching is investigated using BCl3/Cl2 based inductively coupled plasma at constant ICP/RF powers for HEMT fabrication. The effect of chamber process pressure (5-15 mTorr) and BCl3/Cl2 flow rate ratio >1 on mesa sidewall profile is studied in detail using less complex photoresist mask. Mesa sidewall sharpness varied strongly with chamber pressure and deteriorated at lower pressure ∼5 mTorr. The etched GaN mesas resulted in severely damaged sidewalls with significant sidewall erosion at BCl3/Cl2 ratio of <1, which reduced gradually as BCl3/Cl2 ratio was increased to values >1 mainly due to decreased Cl ion/neutral scattering at the edges. Finally, the smooth and sharp mesa sidewalls with angle of ∼80° and moderate GaN etch rate of ∼1254 Å/min are obtained at BCl3/Cl2 ratio of 2.5:1 and 10 mTorr pressure due to a better balance between physical and chemical components of ICP etching.  相似文献   

11.
The influence of gamma radiation from a Co60 source on some characteristics of AlGaN/GaN HEMT heterostructures has been studied. The dose dependence of the total source and drain resistances is determined using a modified graphical-analytical method for calculation of the characteristic resistances of HEMTs. The contacts exhibit a significant radiation-stimulated degradation, which detrimentally affects the transistor operation and may account for the observed decrease in HEMT characteristics such as the saturation current and the transconductance.  相似文献   

12.
It has been shown that the interaction of 1 MeV protons at doses of (0.5–2) × 1014 cm–2 with transistor structures having a 2D AlGaN/GaN channel (AlGaN/GaN HEMTs) is accompanied not only by the generation of point defects, but also by the formation of local regions with a disordered nanomaterial. The degree of disorder of the nanomaterial was evaluated by multifractal analysis methods. An increase in the degree of disorder of the nanomaterial, manifested the most clearly at a proton dose of 2 × 1014 cm–2, leads to several-fold changes in the mobility and electron density in the 2D channel of HEMT structures. In this case, the transistors show a decrease in the source–drain current and an order-of-magnitude increase in the gate leakage current. In HEMT structures having an enhanced disorder of the nanomaterial prior to exposure to protons, proton irradiation results in suppression of the 2D conductivity in the channel and failure of the transistors, even at a dose of 1 × 1014 cm–2.  相似文献   

13.
《IEEE sensors journal》2010,10(1):64-70
Peltier element cooling of ungated AlGaN/GaN high electron mobility transistors (HEMTs) is shown to be an effective method for condensing exhaled breath, enabling the measurement of the pH and glucose of the exhaled breath condensate (EBC). By comparison with standard solutions, the current change measured in the HEMTs with EBC shows that the sensitivity of the glucose detection is lower than the glucose concentration in the EBC of healthy human subjects and the pH of the condensate from the exhaled breath is within the range of 7–8, typical of that for human blood. The HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. Details of the transmitter and receiver design for the transmission system are given. Our work demonstrates the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology without the need for clinical visits.   相似文献   

14.
With the help of MgO mask layer, LiNbO3 (LN) ferroelectric films were etched effectively using wet etching method and LN/AlGaN/GaN ferroelectric field-effect transistors (FFETs) were fabricated. The electrical properties of the FFETs were studied. Due to the ferroelectric polarization nature of LN films, normally-off characteristics with a turn-on voltage of about + 1.0 V were exhibited in the device. The operation mechanisms of the LN/AlGaN/GaN FFET devices were proposed by the numerical calculations of the electronic band structure and charge distribution.  相似文献   

15.
AlGaN/GaN-based diodes and gateless HEMTs for gas and chemical sensing   总被引:1,自引:0,他引:1  
The characteristics of Pt/GaN Schottky diodes and Sc/sub 2/O/sub 3//AlGaN/GaN metal-oxide semiconductor (MOS) diodes as hydrogen and ethylene gas sensors and of gateless AlGaN/GaN high-electron mobility transistors (HEMTs) as polar liquid sensors are reported. At 25/spl deg/C, a change in forward current of /spl sim/6 mA at a bias of 2 V was obtained in the MOS diodes in response to a change in ambient from pure N/sub 2/ to 10% H/sub 2// 90% N/sub 2/. This is approximately double the change in forward current obtained in Pt/GaN Schottky diodes measured under the same conditions. The mechanism appears to be formation of a dipole layer at the oxide/GaN interface that screens some of the piezo-induced channel charge. The MOS-diode response time is limited by the mass transport of gas into the test chamber and not by the diffusion of atomic hydrogen through the metal/oxide stack, even at 25/spl deg/C. Gateless AlGaN/GaN HEMT structures exhibit large changes in source-drain current upon exposing the gate region to various polar liquids, including block co-polymer solutions. The polar nature of some of these polymer chains lead to a change of surface charges in gate region on the HEMT, producing a change in surface potential at the semiconductor/liquid interface. The nitride sensors appear to be promising for a wide range of chemicals, combustion gases and liquids.  相似文献   

16.
The growth of AlGaN/GaN high electron mobility transistor (HEMT) structures on sapphire by metal organic vapor phase epitaxy (MOVPE) is described, with special emphasis on procedures to reduce dislocation density. All the processing steps involved in the fabrication of nitride-based HEMTs have been optimized, including dry etching by ion beam milling, evaporation of Pt/Ti/Au gate contacts, and SiN x surface passivation. Devices with several gate lengths and different geometries have been fabricated by standard photo- and e-beam lithography. d.c. drain current and transconductance increase when gate length is reduced, up to 950 mA mm–1 and 230 mS mm–1, respectively, at V GS=0 V, in HEMTs with a gate length L G=0.2 m. A maximum output power higher than 5 W mm–1 is estimated. Finally, small-signal measurements yield f T=12 GHz and f max=25 GHz for HEMTs with L G=0.5 m, which increase up to 20 and 35 GHz for L G=0.2 m, respectively. Limitation of high-frequency performance by parasitics is discussed.  相似文献   

17.
Li Y  Xiang J  Qian F  Gradecak S  Wu Y  Yan H  Blom DA  Lieber CM 《Nano letters》2006,6(7):1468-1473
We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals. In addition, the thicknesses and compositions of the individual AlN and AlGaN shells were unambiguously identified using cross-sectional high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM). Transport measurements carried out on GaN/AlN/AlGaN and GaN nanowires prepared using similar conditions demonstrate the existence of electron gas in the undoped GaN/AlN/AlGaN nanowire heterostructures and also yield an intrinsic electron mobility of 3100 cm(2)/Vs and 21,000 cm(2)/Vs at room temperature and 5 K, respectively, for the heterostructure. Field-effect transistors fabricated with ZrO(2) dielectrics and metal top gates showed excellent gate coupling with near ideal subthreshold slopes of 68 mV/dec, an on/off current ratio of 10(7), and scaled on-current and transconductance values of 500 mA/mm and 420 mS/mm. The ability to control synthetically the electronic properties of nanowires using band structure design in III-nitride radial nanowire heterostructures opens up new opportunities for nanoelectronics and provides a new platform to study the physics of low-dimensional electron gases.  相似文献   

18.
AlGaN/GaN HEMTs are devices which are strongly influenced by surface properties such as donor states, roughness or any kind of inhomogeneity. The electron gas is only a few nanometers away from the surface and the transistor forward and reverse currents are considerably affected by any variation of surface property within the atomic scale. Consequently, we have used the technique known as conductive AFM (CAFM) to perform electrical characterization at the nanoscale. The AlGaN/GaN HEMT ohmic (drain and source) and Schottky (gate) contacts were investigated by the CAFM technique. The estimated area of these highly conductive pillars (each of them of approximately 20-50?nm radius) represents around 5% of the total contact area. Analogously, the reverse leakage of the gate Schottky contact at the nanoscale seems to correlate somehow with the topography of the narrow AlGaN barrier regions producing larger currents.  相似文献   

19.
In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale (~6 nm) reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.  相似文献   

20.
High current densities in wide-bandgap semiconductor electronics operating at high power levels results in significant self-heating of devices, which necessitates the development thermal management technologies to effectively dissipate the generated heat. This paper lays the foundation for the development of such technology by ascertaining process conditions for depositing nanocrystalline diamond (NCD) on AlGaN/GaN High Electron Mobility Transistors (HEMTs) with no visible damage to device metallization. NCD deposition is carried out on Si and GaN HEMTs with Au/Ni metallization. Raman spectroscopy, optical and scanning electron microscopy are used to evaluate the quality of the deposited NCD films. Si device metallization is used as a test bed for developing process conditions for NCD deposition on AlGaN/GaN HEMTs. Results indicate that no visible damage occurs to the device metallization for deposition conditions below 290 °C for Si devices and below 320 °C for the AlGaN/GaN HEMTs. Possible mechanisms for metallization damage above the deposition temperature are enumerated. Electrical testing of the AlGaN/GaN HEMTs indicates that it is indeed possible to deposit NCD on GaN-based devices with no significant degradation in device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号