首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the contribution to carrier density by oxygen vacancies in tin-doped indium oxide (ITO) films prepared on glass substrates by the hot-cathode plasma sputtering method, we have investigated the effect of annealing on the electrical properties of an ITO film with a resistivity of 1.0 × 10− 4 Ω cm. A drastic decrease in carrier density from 2.0 × 1021 to 0.88 × 1021 cm− 3 was found with gradual increase in the Hall mobility from 29 to 35 cm2 V− 1 s− 1 for repeated annealing cycles, when the ITO film was exposed for one hour to 400 °C oxygen gas at atmospheric pressure. The results indicate that the contribution of oxygen vacancies to carrier density was ca. 1.12 × 1021 cm− 3 for the ITO film with an overall carrier density of 2.0 × 1021 cm− 3.  相似文献   

2.
To obtain a suitable sputtering target for depositing transparent conducting Al-doped ZnO (AZO) films by using direct current (DC) magnetron sputtering, this study investigates the possibility of using atmosphere controlled sintering of Al2O3 mixed ZnO powders to prepare highly conductive ceramic AZO targets. Experimental results show that a gas mixture of Ar and CO could produce a sintered target with resistivity in the range of 2.23 × 10− 4 Ω cm. The fairly low resistivity was mainly achieved by the formation of both aluminum substitution (AlZn) and oxygen vacancy (VO), thus greatly increasing the carrier concentration. Compared to usual air sintered target, the thin film deposited by the Ar + CO sintered target exhibited lower film resistivity and more uniform spatial distribution of resistivity. A film resistivity as low as 6.8 × 10− 4 Ω cm was obtained under the sputtering conditions of this study.  相似文献   

3.
Al-doped transparent conducting zinc oxide (AZO) films, approximately 20-110 nm-thick, were deposited on glass substrates at substrate temperatures between 200 and 300 °C by pulsed laser deposition (PLD) using an ArF excimer laser (λ = 193 nm). When fabricated at a substrate temperature of 260 °C, a 40-nm-thick AZO film showed a low resistivity of 2.61 × 10− 4 Ω·cm, carrier concentration of 8.64 × 1020 cm− 3, and Hall mobility of 27.7 cm2/V·s. Furthermore, for an ultrathin 20-nm-thick film, a resistivity of 3.91 × 10− 4 Ω·cm, carrier concentration of 7.14 × 1020 cm− 3, and Hall mobility of 22.4 cm2/V·s were obtained. X-ray diffraction (XRD) spectra, obtained by the θ-2θ method, of the AZO films grown at a substrate temperature of 260 °C showed that the diffraction peak of the ZnO (0002) plane increased as the film thickness increased from 20 to 110 nm. The full-width-at-half-maximum (FWHM) values were 0.5500°, 0.3845°, and 0.2979° for film thicknesses of 20, 40, and 110 nm, respectively. For these films, the values of the average transmittance in visible light wavelengths (400-700 nm) were 95.1%, 94.2%, and 96.6%, respectively. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations showed that even the 20-nm-thick films did not show island structures. In addition, exfoliated areas or vacant and void spaces were not observed for any of the films.  相似文献   

4.
Al-doped zinc oxide (AZO) thin films were deposited onto flexible polyethylene terephthalate substrates, using the radio frequency (RF) magnetron sputtering process, with an AZO ceramic target (The Al2O3 content was about 2 wt.%). The effects of the argon sputtering pressure (in the range from 0.66 to 2.0 Pa), thickness of the Al buffer layer (thickness of 2, 5, and 10 nm) and annealing in a vacuum (6.6 × 10− 4 Pa), for 30 min at 120 °C, on the morphology and optoelectronic performances of AZO films were investigated. The resistivity was 9.22 × 10− 3 Ω cm, carrier concentration was 4.64 × 1021 cm− 3, Hall mobility was 2.68 cm2/V s and visible range transmittance was about 80%, at an argon sputtering pressure of 2.0 Pa and an RF power of 100 W. Using an Al buffer decreases the resistivity and optical transmittance of the AZO films. The crystalline and microstructure characteristics of the AZO films are improved by annealing.  相似文献   

5.
Akihiko Kono 《Vacuum》2008,83(3):548-551
Tin-doped indium oxide (ITO) films fabricated on glass substrates using a hot-cathode plasma sputtering method exhibited low resistivity of 9.7 × 10−5 Ω cm, which is due to a high carrier density of 2.1 × 1021 cm−3. The change in the number of carriers, N, as a function of film thickness d, strongly suggests that oxygen extraction in the initial stages of ITO film growth on the glass substrate surface, creates oxygen vacancies as an electron carrier source for improvement in the resistivity of the films.  相似文献   

6.
A low-resistive Al-doped ZnO (AZO) film was achieved by rapid thermal annealing. A co-sputtering method was used in the initial growth of AZO films and a rapid annealing process was performed on the as-deposited AZO film under N2 atmosphere for 3 min. An as-deposited AZO film had an optical transmittance of 84.78% at 550 nm and a resistivity of 7.8 × 10− 3 Ω cm. A rapid annealing process significantly improved the optical transmittance and electrical resistivity of the AZO film to 99.67% and 1 × 10− 3 Ω cm, respectively. The structural changes of the AZO films were investigated by X-ray diffraction and transmission electron microscopy. The high quality AZO film was used to fabricate a metal-semiconductor-metal (MSM) structure for a UV detector. The MSM device provided a stable current of 25 μA at a bias of 2 V in a dark condition. Under UV illumination, the MSM device was highly responsive to UV light uniformly and repeatedly, and it enhanced the current by 80% at 45 μA. This rapid thermal annealing process may provide a useful method to fabricate quality AZO films for photoelectric applications with a low thermal budget.  相似文献   

7.
High-quality Al-doped zinc oxide (AZO) thin films have been deposited on quartz substrates by radio-frequency magnetron sputtering at room temperature for thin film solar cell applications as transparent conductive oxide (TCO) electrode layers. Effects of post-deposition annealing treatment in pure nitrogen and nitrogen/hydrogen atmosphere have been investigated. Annealing treatments were carried out from 300 °C to 600 °C for compatibility with typical optoelectronic device fabrication processes. A series of characterization techniques, including X-ray diffraction, scanning electron microscopy, Hall, optical transmission, and X-ray photoelectron spectroscopy has been employed to study these AZO materials. It was found that there were significant changes in crystallinity of the films, resistivity increased from 4.60 × 10− 4 to 4.66 × 10− 3 Ω cm and carrier concentration decreased from 8.68 × 1020 to 2.77 × 1020 cm− 3 when annealing in 400 °C pure nitrogen. Whereas there were no significant changes in electrical and optical properties of the AZO films when annealing in 300-500 °C nitrogen/hydrogen atmosphere, the electrical stability of the AZO films during the hydrogen treatment is attributed to both desorption of adsorbed oxygen from the grain boundaries and production of additional oxygen vacancies that act as donor centers in the films by removal of oxygen from the ZnO matrix. These results demonstrated that the AZO films are stably suited for TCO electrodes in display devices and solar cells.  相似文献   

8.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

9.
High performance self-aligned top-gate zinc oxide (ZnO) thin film transistors (TFTs) utilizing high-k Al2O3 thin film as gate dielectric are developed in this paper. Good quality Al2O3 thin film was deposited by reactive DC magnetron sputtering technique using aluminum target in a mixed argon and oxygen ambient at room temperature. The resulting transistor exhibits a field effect mobility of 27 cm2/V s, a threshold voltage of − 0.5 V, a subthreshold swing of 0.12 V/decade and an on/off current ratio of 9 × 106. The proposed top-gate ZnO TFTs in this paper can act as driving devices in the next generation flat panel displays.  相似文献   

10.
Top-contact Copper phthalocyanine (CuPc) thin-film field-effect transistor (TFT) with SiO2/Ta2O5/SiO2 (STS) multilayer as the dielectric was fabricated and investigated. With the multi-layer dielectric, drive voltage was remarkably reduced. A relatively large on-current of 1.1 × 107 A at a VGS of −15 V was obtained due to the strong coupling capability provided by the STS multilayer gate insulator. The device shows a moderate performance: saturation mobility of μsat = 6.12 × 104 cm2/V s, on-current to off-current ratio of Ion/Ioff = 1.1 × 103, threshold voltage of VTH = −3.2 V and sub-threshold swing SS = 1.6 V/dec. Atomic force microscope images show that the STS multilayer has a relative smooth surface. Experiment results indicate that STS multilayer is a promising insulator for the low drive voltage CuPc-based TFTs.  相似文献   

11.
Single-crystalline Ti1−xNbxO2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti1−xNbxO2 films with x ≥ 0.03 is 2-3 × 10− 4 Ω cm at room temperature. The carrier density of Ti1−xNbxO2, which is almost proportional to the Nb concentration, can be controlled in a range of 1 × 1019 to 2 × 1021 cm− 3. Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti1−xNbxO2 is one of the promising candidates for the practical TCOs.  相似文献   

12.
In transparent conducting impurity-doped ZnO thin films prepared on glass substrates by a dc magnetron sputtering (dc-MS) deposition, the obtainable lowest resistivity and the spatial resistivity distribution on the substrate surface were improved by a newly developed MS deposition method. The decrease of obtainable lowest resistivity as well as the improvement of spatial resistivity distribution on the substrate surface in Al- or Ga-doped ZnO (AZO or GZO) thin films were successfully achieved by inserting a very thin buffer layer, prepared using the same MS apparatus with the same target, between the thin film and the glass substrate. The deposition of the buffer layer required a more strongly oxidized target surface than possible to attain during a conventional dc-MS deposition. The optimal thickness of the buffer layer was found to be about 10 nm for both GZO and AZO thin films. The resistivity decrease is mainly attributed to an increase of Hall mobility rather than carrier concentration, resulting from an improvement of crystallinity coming from insertion of the buffer layer. Resistivities of 3 × 10− 4 and 4 × 10− 4Ω cm were obtained in 100 nm-thick-GZO and AZO thin films, respectively, incorporating a 10 nm-thick-buffer layer prepared at a substrate temperature around 200 °C.  相似文献   

13.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

14.
Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (ID-VD), drain current-gate voltage (ID-VG), threshold voltage (VT), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 × 10− 3 Ω·cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm2/V s and the on/off ratio of ~ 105. Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.  相似文献   

15.
Amorphous zinc oxide thin films have been processed out of an aqueous solution applying a one step synthesis procedure. For this, zinc oxide containing crystalline water (ZnO⋅ × H2O) is dissolved in aqueous ammonia (NH3), making use of the higher solubility of ZnO⋅ × H2O compared with the commonly used zinc oxide. Characteristically, as-produced layers have a thickness of below 10 nm. The films have been probed in standard thin film transistor devices, using silicon dioxide as dielectric layer. Keeping the maximum process temperature at 125 °C, a device mobility of 0.25 cm2V− 1s− 1 at an on/off ratio of 106 was demonstrated. At an annealing temperature of 300 °C, the performance could be optimized up to a mobility of 0.8 cm2V− 1s− 1.  相似文献   

16.
We present the relationship between parameters of reactive RF diode sputtering from a zinc oxide (ZnO) target and the crystalline, electrical and optical properties of n-/p-type ZnO thin films. The properties of the ZnO thin films depended on RF power, substrate temperature and, particularly, on working gas mixtures of Ar/O2 and of Ar/N2. Sputtering in Ar+O2 working gas (up to 75% of O2) improved the structure of an n-type ZnO thin film, from fibrous ZnO grains to columnar crystallites, both preferentially oriented along the c-axis normally to the substrate (〈0 0 2〉 direction). These films had good piezoelectric properties but also high resistivity (ρ≈103 Ω cm). ZnO:N p-type films exhibited nanograin structure with preferential 〈0 0 2〉 orientation at 25% N2 and 〈1 0 0〉 orientation for higher N2 content. The presence of nitrogen NO at O-sites forming NO-O acceptor complexes in ZnO was proven by SIMS and Raman spectroscopy. A minimum value of resistivity of 790 Ω cm, a p-type carrier concentration of 3.6×1014 cm−3 and a Hall mobility of 22 cm2 V−1 s−1 were obtained at 75% N2.  相似文献   

17.
Al-doped ZnO (AZO) films were deposited on fused silica glass substrates unheated or heated at 200 °C by reactive dc sputtering using a Zn-Al alloy target with mid-frequency pulsing (50 kHz) and the plasma control unit with a feedback system of the optical emission intensity of the atomic O* line at 777 nm to control oxygen gas flow. The stable and reproducible depositions were successfully carried out in the transition region. The deposition rates attained in this study were about 10-20 times higher than the one by conventional sputtering using oxide targets. The AZO films with the lowest resistivity of 3.8 × 10− 4 Ω cm was deposited on the substrate heated at 200 °C with a sputter power of 4 kW, where the deposition rate was 385 nm/min.  相似文献   

18.
Y.C. Lin  C.H. Chang  P.W. Wang 《Thin solid films》2010,518(21):6055-6060
Transparent conducting oxide thin films are used as front contact material for dye-sensitized solar cells. This study investigated the effects of chromium (Cr) and vanadium (V) contents on the chemical and heat stability properties of aluminum-doped zinc oxide (AZO) thin films using pulsed direct current magnetic sputtering on Corning 1737F glass substrates. The experimental results show that Cr and V doping is useful for improving the chemical and thermal stability of AZO films. The energy gap for AZO thin films is between 3.65 and 3.69 eV. The resistivity of the AZO:Cr:V thin film was 4.23 × 10-4 Ω cm at a Cr/V ratio of 0.30/0.23 wt.%, deposition power of 150 W, working distance of 5.5 cm, substrate temperature of 473 K, working pressure of 0.4 Pa, and frequency of 10 kHz. This value is lesser than (and therefore superior to) the resistivity of SnO2:F (FTO) films (6.5 × 10-4 Ω cm), but greater than that of SnO2:In (ITO) thin films (1.2 × 10-4 Ω cm). The resistivity increased by about 0.27% after electrolyte etching, which is similar to the 0.16% increase observed for the ITO thin film. After a thermal cycle test at 673 K, the resistivity of the AZO:Cr:V film increased to 5.42 × 10-4 Ω cm, which is better than the resistivity of the ITO and FTO films after the same thermal cycle.  相似文献   

19.
Al-doped ZnO (AZO) films were deposited on glass by hollow cathode gas flow sputtering using Zn-Al alloy targets. Sputtering power for all the depositions was fixed at 1500 W. Resistivities of 0.81-1.1 × 10− 3 Ω cm were obtained for AZO films deposited at room temperature with an O2 flow from 38 to 50 standard cubic centimetre/minute (SCCM), while static deposition rates were almost constant at 270-300 nm/min. On the other hand, lower resistivities of 5.2-6.4 × 10− 4 Ω cm were obtained for AZO films deposited at 200 °C with an O2 flow from 25 to 50 SCCM, while the static deposition rates were almost constant at 200-220 nm/min. Average transmittances in the visible light region were above 80% for both sets of films.  相似文献   

20.
Growth conditions suitable for sputter-epitaxy of Bim + 1Fem-3Ti3O3m + 3 (BFTO) thin films with layered structure have been investigated. The amount of oxygen during deposition was found to be specifically essential for obtaining a good-quality thin film of BFTO with a large m. The (001) epitaxial thin films of BFTO with m of nearly 10 which is expected to retain magnetic order up to room temperature have been successfully grown on (001) SrTiO3 substrates under the determined optimum condition. The film exhibited leakage current as low as order of 10−2-10−1 A/m2 limited by Schottky emission at the interfaces between the electrodes and the film. In addition, the film showed a ferroelectric polarization curve with Pr = 6 μC/cm2 for applied field of 35 MV/m at room temperature though the curve was unsaturated. These indicate that the BFTO (m = 10) thin films are promising as multiferroics at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号