首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stainless steel matrix composites reinforced with TiB2 or TiC particulates have been in situ produced through the reactive sintering of Ti, C and FeB. X-ray diffraction analysis confirmed the completion of reaction. The TiB2, TiC and steel were detected by X-ray diffraction analysis. No other reaction product or boride was found, indicating the stability of TiB2 and TiC in steel matrix. The SEM micrographs revealed the morphology and distribution of in situ synthesized TiB2 and TiC reinforcements in steel matrix. During sintering the reinforcements TiB2 and TiC grew in different shapes. TiB2 grew in hexagonal prismatic and rectangular shape and TiC in spherical shape.  相似文献   

2.
Superhard titanium diboride (TiB2) coatings (Hv> 40 GPa) were deposited in Ar atmosphere from stoichiometric TiB2 target using an unbalanced direct current (d. c.) magnetron. Polished Si (0 0 1), stainless steel, high-speed steel (HSS) and tungsten carbide (WC) substrates were used for deposition. The influence of negative substrate bias, Us, and substrate temperature, Ts, on mechanical properties of TiB2 coatings was studied. X-ray diffraction (XRD) analysis showed hexagonal TiB2 structure with (0 0 01) preferred orientation. The texture of TiB2 coatings was dependent upon the ion bombardment (Us increased from 0 to −300 V) and the substrate heating (Ts increased from room temperature (RT) to 700 °C). All TiB2 coatings were measured using microhardness tester Fischerscope H100 equipped with Vickers and Berkovich diamond indenters and exhibited high values of hardness Hv up to 34 GPa, effective Young's modulus E*=E/(1) ranging from 450 to 600 GPa; here E and ν are the Young's modulus and Poisson's ratio, respectively, and elastic recovery We≈80%. TiB2 coating with a maximum hardness Hv≈73 GPa and E*≈580 GPa was sputtered at Us=−200 V and Ts=RT. Macrostresses of coatings σ were measured by an optical wafer curvature technique and evaluated by Stoney equation. All TiB2 coatings exhibited compressive macrostresses.  相似文献   

3.
We report on photo-fixation of SO2 onto nanostructured TiO2 thin films prepared by reactive DC magnetron sputtering. The films were exposed to 50 ppm SO2 gas mixed in synthetic air and illuminated with UV light at 298 and 473 K. The evolution of the adsorbed SOx species was monitored by in situ Fourier transform infrared specular reflection spectroscopy. Significant photo-fixation occurred only in the presence of UV illumination. The SO2 uptake was dramatically enhanced at elevated temperatures and then produced strongly bonded surface-coordinated SOx complexes. The total SOx uptake is consistent with Langmuir adsorption kinetics. The sulfur doping at saturation was estimated from X-ray photoelectron spectroscopy to be ~ 2.2 at.% at 473 K. These films were pale yellowish and had an optical absorption coefficient being ~ 3 times higher than in undoped film. The S-doped films exhibit interesting oleophobic properties, exemplified by the poor adherence of stearic acid. Our results suggest a new method for sulfur doping of TiO2 to achieve combined anti-grease and photocatalytic properties.  相似文献   

4.
《Vacuum》2008,82(11-12):1519-1523
Titanium diboride (TiB2) films are being investigated due to their promising uses not only in electronic devices but also for mechanical purposes. Its excellent corrosion resistance and chemical stability, as well as high hardness and wear resistance, makes TiB2 particularly suitable for aluminium processing (e.g. extrusion, die-casting and machining). In the present work, TiB2 coatings were produced by non-reactive DC magnetron sputtering from a TiB2 target on a tool steel substrate (AISI H13 premium/EN X40 CrMoV 5-1-1). Substrates similar to those frequently found on the aluminium injection industry were produced by vacuum quenching and tempering. The deposition parameters, namely the target/substrate distance, discharge current and substrate bias, were varied in order to obtain crystalline and well-structured films, suiting the substrate composition and microstructure. The coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy/EDS.A deposition rate of 23 nm/min was obtained for 0.85 A cathode current intensity and 70 mm substrate–magnetron distance. For positively biased substrates, all films are dense, without a columnar structure and show a (0 0 1) texture. For negatively biased substrates, there are less surface heating effects due to a much lower electron current through the substrate, and an ordered structure appears only at −150 V.  相似文献   

5.
Yan-Zuo Tsai 《Thin solid films》2010,518(24):7523-7526
The CrAlSiN/W2N multilayer coatings were fabricated by DC magnetron sputtering. The bilayer periods of multilayer films were controlled in the range from 3 to 20 nm. The cross-sectional structure of multilayer and monolayer coatings was evaluated by transmission electron microscopy (TEM). The wear behavior of monolayer and multilayer coatings was investigated by a pin-on-disc tribometer. The nano-scratch tester was employed to study the crack propagation of scratched coatings. The images of wear scars were observed by optical microscopy (OM). The cross-sectional image of scratched films was analyzed by transmission electron microscopy (TEM). Owing to the nano-layered structure and higher hardness (or H/E ratio), the multilayer coatings exhibited better wear resistance than homogeneous films. The coefficient of friction of CrAlSiN/W2N multilayer coating with a bilayer period of 8 nm was around 0.6, and that of CrAlSiN homogeneous film was about 0.8. Different crack propagation mechanisms of CrAlSiN/W2N multilayer and CrAlSiN monolayer coatings were proposed and discussed.  相似文献   

6.
TiO2/SnO2 stacked-layers are synthesized by reactive sputter deposition on the glass substrate. Very thin TiO2/SnO2 bilayer-photocatalysts exhibited a very high photocatalytic activity for a degradation of gaseous acetaldehyde. Both the control of an electronic structure of TiO2 overlayer in the near-surface region and the interfacial separation of photogenerated electrons/holes in the TiO2/SnO2 stacked-layer are keys to improve the photocatalytic performance.  相似文献   

7.
K. Chu  Y.H. Lu  Y.G. Shen 《Thin solid films》2008,516(16):5313-5317
Nano-multilayers represent a new class of engineering materials that are made up of alternating nanometer scale layers of two different components. In the present work a titanium (Ti) monolayer was combined with titanium diboride (TiB2) to form a Ti/TiB2 nano-multilayer. Designed experimental parameters enabled an evaluation of the effects of direct current bias voltage (Ub) and bilayer thickness (Λ) during multilayer deposition on the mechanical properties of reactively sputtered Ti/TiB2 multilayer films. Their nanostructures and mechanical properties were characterized and analyzed using X-ray photoelectron spectroscopy (XPS), low-angle and high-angle X-ray diffraction (XRD), plan-view and cross-sectional high-resolution transmission electron microscopy (HRTEM), and microindentation measurements. Under the optimal bias voltage of Ub = − 60 V, it was found that Λ (varied from 1.1 to 9.8 nm) was the most important factor which dominated the nanostructure and hardness. The hardness values obtained varied from 12 GPa for Ti and 15 GPa for TiB2 monolayers, up to 33 GPa for the hardest Ti/TiB2 multilayer at Λ = 1.9 nm. The observed hardness enhancement correlated to the layer thickness, followed a relation similar to the Hall-Petch strengthening dependence, with a generalized power of ∼ 0.6. In addition, the structural barriers between two materials (hcp Ti/amorphous TiB2) and stress relaxation at interfaces within multilayer films resulted in a reduction of crack propagation and high-hardness.  相似文献   

8.
This work presents the research results on the structure and mechanical properties of coatings deposited by PVD methods on the X40CrMoV5-1 hot work tool steel substrates. The tests were carried out on CrAlSiN, CrAlSiN+DLC, CrN and WC/a-C:H coatings. It was found that tested coatings have nanostructural character with fine crystallites, while their average size fitted within the range 3-13 nm, depending on the coating type. The coatings demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate, the latter not only being the effect of interatomic and intermolecular interactions, but also by the transition zone between the coating and the substrate, developed as a result of diffusion that caused mixing of the elements in the interface zone and the compression stresses values. The critical load LC2 lies within the range 45-55 N, depending on the coating type. The coatings demonstrate a high hardness (4000 HV).  相似文献   

9.
ZrO2 films were deposited by reactive gas flow sputtering (GFS) where voltage is applied to a cyindrical hollow-cathode target from a DC source, the discharge being produced at relatively high sputtering pressure. In this system, secondary electrons form a major component of the total current flow and lead to heating of the substrate which in turn has an effect on the properties of deposited films. The present experiments were carried out under the following conditions: Ar gas flow rate of 200 sccm, O2 flow rate FO2 in the range between 0.003 and 1 sccm, and sputtering power (PS) in the range of 50-800 W. The reults showed that the crystal structure of the films deposited for PS below 200 W was monoclinic but for PS above 400 W, the films included tetragonal cystals of stable structure formed at high temperature by the electron bombardment. The films were formed with grains of 20-100 nm in diameter in a porous structure. The mechanical properties of the films were determined by a nanoindentation technique. Martens hardness (HM) of the porous films was found to be in the range between 220 and 330 MPa which is substantially less than that of films typically deposited by rf magnetron sputtering.  相似文献   

10.
Zn-doped TiO2 films were prepared by means of pulsed DC reactive magnetron sputtering method using Ti and Zn mixed target. The deposition condition was optimized to produce uniform and transparent TiO2 films. Titanium was in the Ti4+ oxidation state in all Zn-doped TiO2 films. The zinc oxide deposited on the substrate was in the fully oxidized state of ZnO. Increase of zinc concentration inhibited the crystal growth in the TiO2 films. The surface morphology gradually changed from crystalline to amorphous along with the increase of doped zinc concentration. The optical transmittances of these films decreased only slightly with increasing zinc concentration due to very similar band edges of ZnO and anatase TiO2. The doped ZnO had weak influence on light absorption of the TiO2 films. When zinc concentration was very low (<1 at%), the photocatalytic activities of the doped films had nearly no difference from that of pure TiO2 film. Photocatalytic activities decreased obviously in the films containing high amount of zinc oxide.  相似文献   

11.
Fanming Meng  Xueping Song  Zhaoqi Sun 《Vacuum》2009,83(9):1147-10720
Nano-TiO2 thin films were deposited on silicon and glass substrates by radio-frequency (RF) magnetron sputtering using TiO2 ceramic target and characterized by X-ray diffractometer, X-ray photoelectron spectrometer, atomic force microscope, and ultraviolet-visible spectrophotometer. Photocatalytic activity was evaluated by light induced degradation of 5 ppm methyl orange solution using a high pressure mercury lamp as lamp-house. It was found that the film as deposited is polymorph, with energy gap of 3.02 eV, and can absorb visible light. The film was repeatedly used for six times in degradation of 5 ppm methyl orange, and the degradation rates of methyl orange solution are 36.566%, 33.112%, 32.824%, 32.248%, 30.521% and 28.794%, respectively. After ultrasonic treatment in de-ionized water for ten minutes, the degradation rate of methyl orange solution resumes to 33.975%.  相似文献   

12.
X.H. Zheng  J.P. Tu  D.M. Lai  B. Gu 《Thin solid films》2008,516(16):5404-5408
WS2-Ag composite films were deposited on medium carbon steel substrate by RF magnetron sputtering method. The morphology and microstructure of the composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tribological behavior was investigated using a ball-on-disk tribometer in vacuum and in humid air. In the range of Ag content of the film from 4.2 at.% to 40.4 at.%, Ag phase dispersed in amorphous WS2 matrix, and it changed from amorphous to crystalline structure with the increase of Ag content. The friction coefficients of composite films in humid air were lower and more stable than those of pure WS2 film, and the environmental sensitivity of tribological behavior decreased obviously with the addition of Ag in the films. At the content of 16.2 at.% Ag, the composite film was dense and adherent, and exhibited excellent tribological performance both in vacuum and in humid air.  相似文献   

13.
H.H. Zhang  Q.Y. Zhang 《Vacuum》2009,83(11):1311-2688
ZrO2 thin films were deposited onto Si wafers and glass slides by reactive rf magnetron sputtering with varying conditions of substrate temperature (Ts). Structural analysis was carried out using high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM). The scaling behavior of the AFM topographical profiles was analyzed using one-dimensional power spectral density method (1DPSD). Morphological and structural evolution of ZrO2 films have been studied in relation to Ts. With substrate temperatures ranging from RT to 550 °C, the structural transition of the films is a-ZrO2 (below 250 °C) → m-ZrO2 with a little a-ZrO2 (450 °C) → m-ZrO2 with a little t-ZrO2 (550 °C). The roughness exponent α is 1.53 ± 0.02, 1.04 ± 0.01, 1.06 ± 0.05, 1.20 ± 0.03 for ZrO2 thin films deposited at RT, 250 °C, 450 °C, and 550 °C, respectively. Quantitative surface characterization by spatially resolved 1DPSD analyses identified three different growth mechanisms of surface morphology for ZrO2 thin films deposited at RT, 250∼450 °C and 550 °C. The evolution and interactions of surface roughness and microstructure are discussed in terms of surface diffusion, grain growth, and flux shadowing mechanisms.  相似文献   

14.
Xiaozheng Yu  Zhigang Shen 《Vacuum》2011,85(11):1026-1031
In the present study, TiO2 films were deposited on the surface of cenosphere particles using the modified magnetron sputtering equipment under different working conditions. The resulting films were characterized by field emission scanning electron microscopy (FE-SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FE-SEM and AFM results show that the grain sizes and root-mean-square (RMS) roughness values of the TiO2 films increase with the increase in deposition time and film thickness. The XRD results indicate that the film was TiO2 film and sputtering time is an importance condition to influence the films crystal. With the increasing of sputtering time, the crystallization of the TiO2 film was increased. The XPS results show that only TiO2 films existed on the surface of cenosphere particles. In addition, the photocatalytic activities of these films were investigated by degrading methyl orange under UV irradiation. The results suggest that the photocatalytic activity of cenosphere particles with anatase TiO2 films is remarkable and this catalyst can be applicable for the photocatalytic degradation of other organic compounds under UV lights.  相似文献   

15.
TiO2 films with thickness of about 500 nm were deposited on unheated non-alkali glass substrates by reactive magnetron sputtering using one Ti metal target with unipolar pulsed powering of 50 kHz and the plasma emission feedback system (PCU). In order to keep the very high deposition rate, the depositions were carried out in the “transition region” between the metallic and the reactive (oxide) sputter mode where the target surface was metallic and oxidized, respectively. Stable deposition was successfully carried out in the whole “transition region” with PCU at total gas pressure of 3.0 Pa. All the as-deposited films deposited in the “transition region” showed amorphous structure, which performed very low photocatalytic activity. After the post-annealing in air at higher than 300 °C, all the films crystallized to anatase polycrystalline structure. They performed both photoinduced decomposition of acetaldehyde and photoinduced hydrophilicity under UV light illumination. The highest deposition rate in this study to deposit the photocatalytic TiO2 films in the “transition region” was 90 nm/min, which was over twenty times higher than that for conventional sputter deposition processes.  相似文献   

16.
M.C. Liao  G.S. Chen 《Thin solid films》2010,518(24):7258-7262
A series of TiO2 thin films was deposited onto glass substrates without intentional heating or biasing by magnetron sputtering of a titanium target using Ar/O2 reactive mixtures over a broad range of total sputtering pressures from 0.12 Pa to 2.24 Pa. Each of the film types was deposited by the threshold poisoned mode at a specific given oxygen flow rate monitored in-situ by optical emission spectroscopy. Both the sputtering pressure and thermal annealing are the key factors for the TiO2 films to yield fast-response superhydrophilicity with a water contact angle of 5°. The mechanism of superhydrophilicity for the TiO2 films deposited by high-pressure sputtering will be discussed based on empirical studies of X-ray diffractometry, high-resolution scanning microscopy and atomic force spectroscopy.  相似文献   

17.
采用超音速火焰喷涂技术在不同氧气流量条件下制备3种TiB2-40Co涂层,采用扫描电镜、X射线衍射仪研究了涂层的组织和相结构,运用压痕法测定了涂层的显微硬度,通过水淬法测试涂层的抗热震性能,并研究涂层的耐熔融铝硅腐蚀性能.结果表明,3种TiB2-40Co涂层具有叠层状结构,No.1涂层最为致密,其孔隙率仅为0.286%;涂层的主要物相为TiB2和Co;显微硬度值分别为697±60 HV0.3、523±86 HV0.3和648±38 HV0.3;No.1涂层具有最好的抗热震性能;经过120 h熔融铝硅腐蚀后发现,3种涂层均具有良好的抗熔融铝硅腐蚀性能,其中No.1涂层试样耐腐蚀性能最好.  相似文献   

18.
Inverse spinel zinc stannate (Zn2SnO4, ZTO) films were deposited onto fused quartz glass substrates heated at 800 °C by rf magnetron sputtering using a ceramic ZTO target (Zn:Sn = 2:1). H2 flow ratios [H2/(Ar + H2)] were controlled from 0 to 30% during the depositions. ZTO films deposited at 800 °C possessed a polycrystalline inverse spinel structure. The lowest resistivity of 1.1 × 10− 2 Ω cm was obtained for a ZTO film deposited at 20% H2 flow ratio. The transmittance of the ZTO film was approximately 80% in the visible region.  相似文献   

19.
Y.M. Zhou  Z. Xie  H.N. Xiao  P.F. Hu  J. He 《Vacuum》2009,84(2):330-334
Double-layer Ta/TaOx films were deposited on glass substrates by direct current magnetron sputtering. The impact of the underlying TaOx on the structure and properties was also investigated using X-ray diffraction analysis, Auger electron microscopy, scanning electron microscopy and atomic force microscopy. This study finds that the structure and properties of Ta/TaOx films depends on the O2 flow during the under-layer TaOx deposition. As the O2 gas flow ratio increases from 3 to 7%, more and more oxidized amorphous TaOx films in the under-layer were formed, which caused the preferred growth orientation of upper Ta films to change from (200) to (221) systematically. Increasing the oxygen flow ratio of under-layer TaOx films also makes the average grain size of upper Ta films decrease from 10.7 to 2.2 nm.  相似文献   

20.
This paper presents the research results on the structure and mechanical properties of gradient coatings deposited by PVD methods on the X40CrMoV5-1 steel substrate. The tests were carried out on TiAlN, TiCN and AlSiCrN coatings. It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 15–50 nm, depending on the coating type. The coatings demonstrated columnar structure as well as good adherence to the substrate, the latter not only being the effect of adhesion but also by the transition zone between the coating and the substrate, developed as a result of diffusion and high-energy ion action that caused mixing of the elements in the interface zone. The critical load L C2 lies within the range of 46–59 N, depending on the coating type. The TiAlN coatings demonstrate the highest hardness and abrasive wear resistance. The good properties of the PVD gradient coatings make them suitable in various engineering and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号