首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and properties of CuAl2O4 thin films have been examined. The CuAl2O4 films were deposited via reactive direct current magnetron sputter using a CuAl2 target. As-deposited films were amorphous. Post-deposition annealing at high temperature in oxygen yielded solid-phase epitaxy on MgO. The film orientation was cube-on-cube epitaxy on (001) MgO single-crystal substrates. The films were transparent to visible light. The band gap of crystalline CuAl2O4 was determined to be ∼ 4 eV using a Tauc plot from the optical transmission spectrum. The dielectric constant of the amorphous films was determined to be ∼ 20-23 at 1-100 kHz.  相似文献   

2.
Pulse electric field induced electron emission from the Pb(Zr0.65Ti0.35)O3 ferroelectric films has been investigated as a function of the film thickness from 0.2 to 4.0 μm and the upper electrode diameter from 200 to 1100 μm. The electron emission charge from the 3.0 μm film was several nC per pulse, which was comparable to that of the bulk ferroelectrics. However, the local dielectric breakdown occurred in the films below 1.0 μm without the electron emission, which was confirmed by the optical microscopy observation after the emission tests. As the upper electrode size decreased and the film thickness increased, electrons were more easily emitted without breakdown.  相似文献   

3.
Yttrium oxide (Y2O3) thin films were grown onto Si(1 0 0) substrates using reactive magnetron sputter-deposition at temperatures ranging from room temperature (RT) to 500 °C. The effect of growth temperature (Ts) on the growth behavior, microstructure and optical properties of Y2O3 films was investigated. The structural studies employing reflection high-energy electron diffraction RHEED indicate that the films grown at room temperature (RT) are amorphous while the films grown at Ts = 300-500 °C are nanocrystalline and crystallize in cubic structure. Grain-size (L) increases from ∼15 to 40 nm with increasing Ts. Spectroscopic ellipsometry measurements indicate that the size-effects and ultra-microstructure were significant on the optical constants and their dispersion profiles of Y2O3 films. A significant enhancement in the index of refraction (n) (from 2.03 to 2.25) is observed in well-defined Y2O3 nanocrystalline films compared to that of amorphous Y2O3. The observed changes in the optical constants were explained on the basis of increased packing density and crystallinity of the films with increasing Ts. The spectrophotometry analysis indicates the direct nature of the band gap (Eg) in Y2O3 films. Eg values vary in the range of 5.91-6.15 eV for Y2O3 films grown in the range of RT-500 °C, where the lower Eg values for films grown at lower temperature is attributed to incomplete oxidation and formation of chemical defects. A direct, linear relationship between microstructure and optical parameters found for Y2O3 films suggest that tuning optical properties for desired applications can be achieved by controlling the size and structure at the nanoscale dimensions.  相似文献   

4.
Optical quality rare-earth (RE) (Nd3+, Eu3+, Gd3+ and Yb3+) doped Sr0.5Ba0.5Nb2O6 (SBN) epitaxial films of ~ 170 nm thick have been successfully grown on MgO (100) single crystal substrates using pulsed laser deposition technique. Strong residual stress in these films has been revealed by Raman spectroscopic studies. Two kinds of in-plane orientations with respect to the MgO substrate co-exist. All the film samples show high transparency in the visible wavelength. Their band-gap energies appear to be independent of the types of dopant. Photoluminescence (PL) spectra of RE-doped SBN ceramics show a strong and broad emission band at around 600 nm (2.07 eV). The peak position of this emission band changes slightly with different RE-dopants. Thin film samples, however, yield a broad PL band at around 385 nm (3.22 eV). This UV emission shows no observable shift in the peak position for different dopants. Apart from these broad emission bands, conspicuous emission lines from Eu3+ and Nd3+ ions are also noted. The origins of these PL spectra are discussed.  相似文献   

5.
Gallium oxide (Ga2O3) films were deposited on MgO (100) substrates by metalorganic vapor phase epitaxy. Structure analyses showed that the films deposited at 550-700 °C were epitaxial β-Ga2O3 films with an out of plane relationship of β-Ga2O3(100)||MgO(100). The film deposited at 650 °C showed the best crystallinity and the microstructure of the film was investigated by high resolution transmission electron microscopy. A theoretical model of the growth mechanism was proposed and the in-plane epitaxial relationship was given to be β-Ga2O3[001]||MgO<011>. A four-domain structure inside the epitaxial film was clarified. The β-Ga2O3 film deposited at 650 °C showed an absolute average transmittance of 95.9% in the ultraviolet and visible range, which had an optical band gap of 4.87 eV.  相似文献   

6.
One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N2/H2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process. Both Y2O3:Tb3+ and Gd2O3:Tb3+ microrods exhibit strong green emission corresponding to 5D4 → 7F5 transition (542 nm) of Tb3+ under UV light excitation (307 and 258 nm, respectively), and low-voltage electron beam excitation (1.5 → 3.5 kV), which have potential applications in fluorescent lamps and field emission displays.  相似文献   

7.
Semiconducting As2Se3 thin films have been prepared from an aqueous bath at room temperature onto stainless steel and fluorine-doped tin oxide (F.T.O.)-coated glass substrates using an electrodeposition technique. It has been found that As2O3 and SeO2 in the volumetric proportion as 4:6 and their equimolar solutions of 0.075 M concentration forms good quality films of As2Se3. The films are annealed in a nitrogen atmosphere at temperature of 200 °C for 2 h. The films are characterised by scanning electron microscopy, X-ray diffraction and optical absorption techniques. Studies reveal that asdeposited and annealed thin films are polycrystalline in nature. The optical band gap has been found to be 2.15 eV for the above-mentioned composition and concentration of the film.  相似文献   

8.
Y2O3 thin film waveguides were prepared by RF magnetron sputtering. The effects of post-deposition annealing on the structure and optical properties have been investigated. The structural evolution of Y2O3 films with annealing temperature was investigated by X-ray diffraction (XRD). Spectroscopic ellipsometry was employed to determine the optical properties of Y2O3 films annealed at various temperatures. It was found that with increasing annealing temperature, the refractive index (n) of Y2O3 films increases. The optical band gap of Y2O3 films shifts to higher energy after higher temperature annealing, which is likely due to the reduction of defects and the change of crystalline structure in Y2O3 films.  相似文献   

9.
Y2O3-Mo cermet cathodes were prepared by mechanical mixing of Y2O3 and Mo powder. The prepared cermet cathode provides a certain secondary emission yield (3.09), about 1.8 times lower than that for the cathode prepared by sol-gel method. It was found that the cathode prepared by sol-gel method had a smaller grain size, which could be attributed to its higher emission property. The energy distributions of primary electrons in the cathodes with different grain sizes have been simulated by Monte Carlo method. Based on the calculation results, the emission models of the cathodes are established and presented. The cathodes with different grain sizes exhibited different ways of emission. Two types of emission, of reflection emission and transmission emission, existed in the cathode with small grain sizes whereas only transmission emission existed in the cathode with large grain sizes.  相似文献   

10.
Eu3+ (2.5 at.%) and Tb3+ (0.005-0.01 at.%) co-doped gadolinium and yttrium oxide (Gd2O3 and Y2O3) powders and films have been prepared using the sol-gel process. High density and optical quality thin films were prepared with the dip-coating technique. Gadolinium (III) 2,4-pentadionate and yttrium (III) 2,4-pentadionate were used as precursors, and europium and terbium in their nitrate forms were used as doping agents. Chemical and structural analyses (infrared spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy) were conducted on both sol-gel precursor powders and dip-coated films. The morphology of thin films heat-treated at 700 °C was studied by means of atomic force microscopy. It was shown that the highly dense and very smooth films had a root mean roughness (RMS) of 2 nm ± 0.2 (A = 0.0075 Tb3+) and 24 nm ± 3.0 (B = 0.01 Tb3+). After treatment at 700 °C, the crystallized films were in the cubic phase and presented a polycrystalline structure made up of randomly oriented crystallites with grain sizes varying from 20 to 60 nm. The X-ray induced emission spectra of Eu3+- and Tb3+-doped Gd2O3 and Y2O3 powders showed that Tb3+ contents of 0.005, 0.0075 and 0.01 at.% affected their optical properties. Lower Tb3+ concentrations (down to 0.005 at.%) in both systems enhanced the light yield.  相似文献   

11.
Yttrium oxide (Y2O3) films have successfully been applied as anti-reflection (AR) and anti-oxidation films for diamond. For significant adhesion improvement between Y2O3 coating and diamond, aluminum nitride (AlN) as an interlayer is introduced. Y2O3 and AlN films were prepared by RF magnetron sputtering of Y2O3 ceramic target in Ar atmosphere and pure Al metal target in Ar + N2 atmosphere, respectively. The Y2O3 and AlN films were studied by X-ray diffraction, X-ray photoelectron spectroscopy, Atomic force microscopy and Spectroscopic ellipsometry. Adherent Y2O3/AlN films on high optical quality chemical vapor deposition diamond with optimum thicknesses for infrared transmission enhancement in 8-10 μm were obtained by a Fourier transform infrared spectrometer. More than 28% increase in maximum transmission was observed for Y2O3/AlN//Diamond//AlN/Y2O3. Comparing between the designed and experimental AR effects for Y2O3/AlN film in 8-10 μm wavebands, experimental average AR effects are smaller for the absorption and scattering loss. AR effects for the Y2O3/AlN films on CVD diamond are proved to be excellent.  相似文献   

12.
Bi3.25La0.75Ti3O12(BiLT) thin films with different thickness were successfully deposited onto fused quartz by chemical solution deposition. X-ray diffraction analysis shows that BiLT thin films are polycrystalline with (0 0 2)-preferred orientation. The dispersion of refractive indices of the BiLT thin films was investigated by the optical transmittance spectrum. The optical band gap energy was estimated from the graph of (hνα)2 versus . The results show that the refractive index and band-gap energy of the BiLT thin films decrease with the films thickness.  相似文献   

13.
Influence of incorporation of Ga in amorphous In-Zn-O transparent conductive oxide films was investigated as a function of Zn/(Zn + In). For In-Zn-O films with no Ga2O3, the range of Zn/(Zn + In) ratio where the amorphous phase appears became narrow at a substrate temperature of 250 °C. With increasing Ga2O3 quantity, amorphous films were obtained even at a high substrate temperature of 250 °C in a wider range of Zn/(Zn + In) than that of In-Zn-O films with no Ga2O3. This means that the trend of crystallization at higher substrate temperature was disturbed with additional Ga incorporation. For the film deposited from ZnO:Ga (Ga2O3: 4.5-7.5 wt%) and In2O3 targets, we obtained a resistivity of 2.8 × 10−4 Ω cm, nearly the same value as that for an In-Zn-O film with no Ga2O3. The addition of more than 7.5 wt% Ga2O3 induced a widening of the optical band gap.  相似文献   

14.
Thin (∼5.0 nm) Y2O3 films were deposited on n-type Si (1 0 0) substrate using RF magnetron sputtering. Detailed studies on the effects of post-deposition annealing (PDA) temperatures (400, 600, 800, and 1000 °C) in argon ambient on these films were performed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscopy, and atomic force microscopy. Interfacial layer (IL) of SiO2 in between Y2O3 and the Si substrate for sample annealed from 400 to 800 °C had been suggested from the results of FTIR. As for sample annealed at 1000 °C, presence of IL might consist of both Y2Si2O7 and/or SiO2 through the detection of Y2Si2O7 compound and Si–O chemical bonding from XRD and FTIR analysis, respectively. For as-deposited sample, no detectable chemical functional group at the IL was recorded. Electrical characteristics of the Y2O3 films were acquired by fabricating metal-oxide–semiconductor capacitor as test structure. An improvement in the breakdown voltage (VB) and leakage current density (J) was perceived as the PDA temperature increased. Of the PDA samples, the attainment of the lowest effective oxide charge, interface trap density, total interface trap density, and the highest barrier height at 1000 °C had contributed to the acquisition of the highest VB and lowest J.  相似文献   

15.
Er3+-doped Y2Ti2O7 and Er2Ti2O7 thin films were fabricated by sol-gel spin-coating method. A well-defined pyrochlore phase ErxY2-xTi2O7 was observed while the annealing temperature exceeded 800 °C. The average transmittance of the ErxY2-xTi2O7 thin films annealed at 400 to 900 °C reduces from ∼ 87 to ∼ 77%. The refractive indices and optical band gaps of ErxY2-xTi2O7 (x = 0-2) annealed at 800 °C/1 h vary from 2.20 to 2.09 and 4.11 to 4.07 eV, respectively. The ∼ 1.53 μm photoluminescence spectrum of Er3+ (5 mol%)-doped Y2Ti2O7 thin films annealed at 700 °C/1 h exhibits the maximum intensity and full-width at half maximum (∼ 60 nm).  相似文献   

16.
Y2O3 doped lead-free piezoelectric ceramics (Bi0.5Na0.5)0.94Ba0.06TiO3 (0-0.7 wt%) were synthesized by the conventional solid state reaction method, and the effect of Y2O3 addition on the structure and electrical properties was investigated. X-ray diffraction shows that Y2O3 diffuses into the lattice of (Bi0.5Na0.5)0.94Ba0.06TiO3 to form a solid solution with a pure perovskite structure. The temperature dependence of dielectric constant of Y2O3 doped samples under various frequencies indicates obvious relaxor characteristics different from typical relaxor ferroelectric and the mechanism of the relaxor behavior was discussed. The optimum piezoelectric properties of piezoelectric constant d33 = 137 pC/N and the electromechanical coupling factor kp = 0.30 are obtained at 0.5% and 0.1% Y2O3 addition, respectively.  相似文献   

17.
M2Y8(SiO4)6O2: Tb3+ (M = Ca, Sr) phosphors have been synthesized with a new silicon source silane crosslinking reagent (N-2-aminoethylic-3-aminopropyldiethoxysilane [NH2(CH2)2NH(CH2)3SiCH3(OCH3)2], abbreviated as AEAPMMS) through the sol-gel process, both of which present the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb3+ ions. It is interesting to be found that the high energy level blue emission (5D3 → 7FJ (J = 6, 5, 4, 3) transition) still can be found in the emission spectrum of Ca2Y8(SiO4)6O2: Tb3+ while it disappears in the emission spectrum of Sr2Y8(SiO4)6O2: Tb3+ for the cross-relaxation-induced quenching.  相似文献   

18.
Spherical monodispersed, submicron-sized Y2O3 powder was prepared via a homogeneous precipitation method using nitrate and urea as raw materials. The structure, phase evolution and morphology of Y2O3 precursor and the calcined powder were studied by FTIR, TG/DTA, XRD and SEM methods. The sphere size of the precursor was about 250 nm and that of Y2O3 powder calcined at 800 °C for 2 h was about 200-210 nm. With the spherical Y2O3 powder and a commercial Al2O3 ultrafine powder, high transparent YAG ceramics was fabricated by vacuum sintering at 1780 °C for 6 h through a solid-state reaction method. The in-line transmittances of the as-fabricated YAG ceramics at the wavelength of 1064 nm and 400 nm were 82.8% and 79.5%, respectively, which were much higher than that of the YAG ceramics with a commercial Y2O3 powder and a commercial Al2O3 ultrafine powder directly. The superior properties are attributed to the good morphology, dispersibility and uniform grain size of the as-prepared spherical Y2O3 powder, which matches that of the commercial Al2O3 powder.  相似文献   

19.
Titanium diboride was produced both by volume combustion synthesis (VCS) and by mechanochemical synthesis (MCP) through the reaction of TiO2, B2O3 and Mg. VCS products, expected to be composed of TiB2 and MgO, were found to contain also side products such as Mg2TiO4, Mg3B2O6, MgB2 and TiN. HCl leaching was applied to the reaction products with the objective of removing MgO and the side products. Formation of TiN could be prevented by conducting the VCS under an argon atmosphere. Mg2TiO4 did not form when 40% excess Mg was used. Wet ball milling of the products before leaching was found to be effective in removal of Mg3B2O6 during leaching in 1 M HCl. When stoichiometric starting mixtures were used, all of the side products could be removed after wet ball milling in ethanol and leaching in 5 M HCl when pure TiB2 was obtained with a molar yield of 30%. Pure TiB2 could also be obtained at a molar yield of 45.6% by hot leaching of VCS products at 75 °C in 5 M HCl, omitting the wet ball milling step. By MCP, products containing only TiB2 and MgO were obtained after 15 h of ball milling. Leaching in 0.5 M HCl for 3 min was found to be sufficient for elimination of MgO. Molar yield of TiB2 was 89.6%, much higher than that of VCS. According to scanning electron microscope analyses, the TiB2 produced had average grain size of 0.27 ± 0.08 μm.  相似文献   

20.
Er3+ and Yb3+ codoped Y2O3 and (Y0.9La0.1)2O3 transparent ceramics were fabricated by the conventional ceramics processing with nanopowders. Compared to Er/Yb:Y2O3, Er/Yb:(Y0.9La0.1)2O3 ceramics had higher transmittance. Intense upconversion (UC) and infrared emission (1543 nm) were observed under excitation of 980 nm. According to three intensity parameters Ω2, Ω4, and Ω6 fitted by the Judd-Ofelt theory, the spectroscopic quality parameters (X), radiative lifetimes (τrad), and emission cross-sections (αem) were determined. Er/Yb:(Y0.9La0.1)2O3 ceramics owned broader peaks and longer lifetime (12.3 ms) at 1548 nm due to the glass-like structure of (Y0.9La0.1)2O3 ceramics. The results showed Y2O3 and Y1.8La0.2O3 transparent ceramics are promising gain media for developing the solid-state 1.5 μm optical amplifiers and tunable UC lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号