共查询到5条相似文献,搜索用时 0 毫秒
1.
Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel. 相似文献
2.
This paper presents a dynamic model of the helium flow in the cryogenic distribution line (QRL) used in the Large Hadron Collider (LHC) at CERN. The study is focused on the return pumping line, which transports gaseous helium at low pressure and temperature over . Our aim is to propose a new real-time model of the QRL while taking into account the non-homogeneous transport phenomena. The flow model is based on 1D Euler equations and considers convection heat transfers, hydrostatic pressure and friction pressure drops. These equations are discretized using a finite difference method based on an upwind scheme. A specific model for the interconnection cells is also proposed. The corresponding simulation results are compared with experimental measurements of a heat wave along the line that results from a quench of a superconducting magnet. Different hypotheses are presented and the influence of specific parameters is discussed. 相似文献
3.
《低温学》2016
The effects of temperature, sliding speed and load on the tribological properties of polyimide (PI), polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK) at cryogenic temperature in vacuum were investigated using a ball-on-disk tribometer. At cryogenic temperature, polymers show higher hardness which results in decreasing contact area between the friction pairs. Moreover, the real surface area in contact between steel ball and polymer disk determines the friction coefficient instead of the formation and adhesion of the transfer film. Thus, the friction coefficients at cryogenic temperatures are lower than at room temperature. On the other hand, wear rates of the three polymers decrease as temperature decreases since molecular mobility and migration are limited at cryogenic temperatures. For the visco-elasticity of PI, PTFE and PEEK, the friction coefficients fall as the load increases. 相似文献
4.
川东北海相气藏埋藏深、温度压力高、普遍含硫、平面及纵向产量变化大,测试工艺复杂,面临井下工具受限、井下事故复杂、井控及环境污染风险大等难题。在川东北高含硫气井测试实践与经验基础上,形成了高压高产含硫气井测试技术。形成了三类六套APR射孔—酸压—测试联作短期测试管柱;管柱力学分析、多级压力控制、国产抗硫及复合地面流程等测试配套工艺满足各类测试要求;以压井、防喷、防漏为主的测试应急方案及措施确保了作业安全。该技术在YB1-侧1,YB12,HB1-1D等井中成功应用,为该类气田勘探开发的顺利进行提供了技术支撑。 相似文献
5.
In this paper, we propose a new model which describes the behaviour of [+φ, −φ]n composite laminates. Tests were performed on glass-epoxy pipes subjected to biaxial tensile and internal pressure loading. Experiments showed that [+55, −55]n pipes exhibit varying types of damaged elastoplastic behaviour depending on the stress ratio σzz/σθθ (axial stress/hoop stress). A plastic model is based on the definition of a yield criterion and an associated flow rule. Damaging occurs when transverse microcracks appear in the layer. A micromechanical model defines the anisotropy of the damage. Interaction between plasticity and damage was of major importance in the definition of damage kinetics. This effect was observed on proportional loadings as well as on sequential tests: a preliminary loading in pure internal pressure (σzz=0) induced large plastic phenomena which blocked crack propagation in additional internal pressure with closed ends effect (IPCEF) tests (R=σzz/σθθ=1/2), even though IPCEF caused considerable damage on an unloaded specimen. 相似文献