首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
孟彩霞 《计算机应用研究》2009,26(11):4054-4056
数据流的无限性、高速性使得经典的频繁模式挖掘方法难以适用到数据流中。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁模式挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集,然后利用Count-Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过实验分析,FP-SegCount算法是有效的。  相似文献   

2.
Mining sequential patterns from data streams: a centroid approach   总被引:1,自引:0,他引:1  
In recent years, emerging applications introduced new constraints for data mining methods. These constraints are typical of a new kind of data: the data streams. In data stream processing, memory usage is restricted, new elements are generated continuously and have to be considered in a linear time, no blocking operator can be performed and the data can be examined only once. At this time, only a few methods has been proposed for mining sequential patterns in data streams. We argue that the main reason is the combinatory phenomenon related to sequential pattern mining. In this paper, we propose an algorithm based on sequences alignment for mining approximate sequential patterns in Web usage data streams. To meet the constraint of one scan, a greedy clustering algorithm associated to an alignment method is proposed. We will show that our proposal is able to extract relevant sequences with very low thresholds.  相似文献   

3.
Mining top-K frequent itemsets from data streams   总被引:1,自引:0,他引:1  
Frequent pattern mining on data streams is of interest recently. However, it is not easy for users to determine a proper frequency threshold. It is more reasonable to ask users to set a bound on the result size. We study the problem of mining top K frequent itemsets in data streams. We introduce a method based on the Chernoff bound with a guarantee of the output quality and also a bound on the memory usage. We also propose an algorithm based on the Lossy Counting Algorithm. In most of the experiments of the two proposed algorithms, we obtain perfect solutions and the memory space occupied by our algorithms is very small. Besides, we also propose the adapted approach of these two algorithms in order to handle the case when we are interested in mining the data in a sliding window. The experiments show that the results are accurate.
Ada Wai-Chee FuEmail:
  相似文献   

4.
Tracking clusters in evolving data streams over sliding windows   总被引:6,自引:4,他引:2  
Mining data streams poses great challenges due to the limited memory availability and real-time query response requirement. Clustering an evolving data stream is especially interesting because it captures not only the changing distribution of clusters but also the evolving behaviors of individual clusters. In this paper, we present a novel method for tracking the evolution of clusters over sliding windows. In our SWClustering algorithm, we combine the exponential histogram with the temporal cluster features, propose a novel data structure, the Exponential Histogram of Cluster Features (EHCF). The exponential histogram is used to handle the in-cluster evolution, and the temporal cluster features represent the change of the cluster distribution. Our approach has several advantages over existing methods: (1) the quality of the clusters is improved because the EHCF captures the distribution of recent records precisely; (2) compared with previous methods, the mechanism employed to adaptively maintain the in-cluster synopsis can track the cluster evolution better, while consuming much less memory; (3) the EHCF provides a flexible framework for analyzing the cluster evolution and tracking a specific cluster efficiently without interfering with other clusters, thus reducing the consumption of computing resources for data stream clustering. Both the theoretical analysis and extensive experiments show the effectiveness and efficiency of the proposed method. Aoying Zhou is currently a Professor in Computer Science at Fudan University, Shanghai, P.R. China. He won his Bachelor and Master degrees in Computer Science from Sichuan University in Chengdu, Sichuan, P.R. China in 1985 and 1988, respectively, and Ph.D. degree from Fudan University in 1993. He served as the member or chair of program committee for many international conferences such as WWW, SIGMOD, VLDB, EDBT, ICDCS, ER, DASFAA, PAKDD, WAIM, and etc. His papers have been published in ACM SIGMOD, VLDB, ICDE, and several other international journals. His research interests include Data mining and knowledge discovery, XML data management, Web mining and searching, data stream analysis and processing, peer-to-peer computing. Feng Cao is currently an R&D engineer in IBM China Research Laboratories. He received a B.E. degree from Xi'an Jiao Tong University, Xi'an, P.R. China, in 2000 and an M.E. degree from Huazhong University of Science and Technology, Wuhan, P.R. China, in 2003. From October 2004 to March 2005, he worked in Fudan-NUS Competency Center for Peer-to-Peer Computing, Singapore. In 2006, he received his Ph.D. degree from Fudan University, Shanghai, P.R. China. His current research interests include data mining and data stream. Weining Qian is currently an Assistant Professor in computer science at Fudan University, Shanghai, P.R. China. He received his M.S. and Ph.D. degree in computer science from Fudan University in 2001 and 2004, respectively. He is supported by Shanghai Rising-Star Program under Grant No. 04QMX1404 and National Natural Science Foundation of China (NSFC) under Grant No. 60673134. He served as the program committee member of several international conferences, including DASFAA 2006, 2007 and 2008, APWeb/WAIM 2007, INFOSCALE 2007, and ECDM 2007. His papers have been published in ICDE, SIAM DM, and CIKM. His research interests include data stream query processing and mining, and large-scale distributed computing for database applications. Cheqing Jin is currently an Assistant Professor in Computer Science at East China University of Science and Technology. He received his Bachelor and Master degrees in Computer Science from Zhejiang University in Hangzhou, P.R. China in 1999 and 2002, respectively, and the Ph.D. degree from Fudan University, Shanghai, P.R. China. He worked as a Research Assistant at E-business Technology Institute, the Hong Kong University from December 2003 to May 2004. His current research interests include data mining and data stream.  相似文献   

5.
DSM-FI: an efficient algorithm for mining frequent itemsets in data streams   总被引:4,自引:4,他引:0  
Online mining of data streams is an important data mining problem with broad applications. However, it is also a difficult problem since the streaming data possess some inherent characteristics. In this paper, we propose a new single-pass algorithm, called DSM-FI (data stream mining for frequent itemsets), for online incremental mining of frequent itemsets over a continuous stream of online transactions. According to the proposed algorithm, each transaction of the stream is projected into a set of sub-transactions, and these sub-transactions are inserted into a new in-memory summary data structure, called SFI-forest (summary frequent itemset forest) for maintaining the set of all frequent itemsets embedded in the transaction data stream generated so far. Finally, the set of all frequent itemsets is determined from the current SFI-forest. Theoretical analysis and experimental studies show that the proposed DSM-FI algorithm uses stable memory, makes only one pass over an online transactional data stream, and outperforms the existing algorithms of one-pass mining of frequent itemsets.
Suh-Yin LeeEmail:
  相似文献   

6.
Frequent pattern mining in data streams is an important research topic in the data mining community. In previous studies, a minimum support threshold was assumed to be available for mining frequent patterns. However, setting such a threshold is typically difficult. Hence, it is more reasonable to ask users to set a bound on the result size. The present study considers mining top-k frequent patterns from data streams using a sliding window technique. A single-pass algorithm, called MSWTP, is developed for the generation of top-k frequent patterns without a threshold. In the method, the content of the transactions in the sliding window is incrementally maintained in a summary data structure, named SWTP-tree, by scanning the stream only once. To make the mining operation efficient, insignificant patterns are distinguished from others by applying the Chernoff bound. Two kinds of obsolete pattern and one kind of insignificant pattern are periodically pruned from the pattern tree. Whenever necessary, the k most frequent patterns can be selected from SWTP-tree in order of their descending frequency. The performance of the proposed technique is evaluated via simulation experiments. The results show that the proposed method is both efficient and scalable, and that it outperforms comparable algorithms.  相似文献   

7.
A data stream is a massive, open-ended sequence of data elements continuously generated at a rapid rate. Mining data streams is more difficult than mining static databases because the huge, high-speed and continuous characteristics of streaming data. In this paper, we propose a new one-pass algorithm called DSM-MFI (stands for Data Stream Mining for Maximal Frequent Itemsets), which mines the set of all maximal frequent itemsets in landmark windows over data streams. A new summary data structure called summary frequent itemset forest (abbreviated as SFI-forest) is developed for incremental maintaining the essential information about maximal frequent itemsets embedded in the stream so far. Theoretical analysis and experimental studies show that the proposed algorithm is efficient and scalable for mining the set of all maximal frequent itemsets over the entire history of the data streams.  相似文献   

8.
Large-scale event systems are becoming increasingly popular in a variety of domains. Event pattern evaluation plays a key role in monitoring applications in these domains. identifies matches of user-defined patterns on high-volume event streams. Existing work on pattern evaluation, however, assumes that the occurrence time of each event is known precisely and the events from various sources can be merged into a single stream with a total or partial order. We observe that in real-world applications event occurrence times are often unknown or imprecise. Therefore, we propose a temporal model that assigns a time interval to each event to represent all of its possible occurrence times and revisit pattern evaluation under this model. In particular, we propose the formal semantics of such pattern evaluation, two evaluation frameworks, and algorithms and optimizations in these frameworks. Our evaluation results using both real traces and synthetic systems show that the event-based framework always outperforms the point-based framework and with optimizations, it achieves high efficiency for a wide range of workloads tested.  相似文献   

9.
数据流频繁项集挖掘是指在数据流中找出出现频数大于给定的最小支持度的项集过程。随着一些新兴应用如传感器网络、网络监控等的出现,数据流中频繁项集挖掘引起了很大的重视。提出了一种新颖的数据流频繁项集挖掘算法RFIF。不同于现有算法,RFIF算法针对现实中的一些实际应用,更多的考虑最近时间发生的事件,但也不完全抛弃历史数据,通过引入GIMT函数,逐渐加大项集支持度的阈值,减少对历史数据中频繁项集的维护。实验验证了算法的有效性。  相似文献   

10.
作为数据流挖掘的一个重要研究问题,滑动窗口下的数据流频繁模式挖掘近年来得到了广泛应用和研究。已有的算法大多要对数据流中所有的数据都进行处理,而现实中用户往往只关注事物的某些方面,由此借鉴MFI-TransSW算法,提出了一种基于事务型滑动窗口的算法BSW-Filter(Bit Sliding Window with Filter)。算法采用比特序列实现滑动窗口操作,同时由于增加了频繁项的筛选,减少了所需保存的数据项个数,从而减小了内存使用和提升处理速度。算法的空间复杂度与滑动窗口大小以及数据流取值范围无关,特别适用于周期较长数据范围广的数据挖掘。分析和实验验证了该算法的可行性和有效性。  相似文献   

11.
In recent years, data stream mining has become an important research topic. With the emergence of new applications, the data we process are not again static, but the continuous dynamic data stream. Examples include network traffic analysis, Web click stream mining, network intrusion detection, and on-line transaction analysis. In this paper, we propose a new framework for data stream mining, called the weighted sliding window model. The proposed model allows the user to specify the number of windows for mining, the size of a window, and the weight for each window. Thus users can specify a higher weight to a more significant data section, which will make the mining result closer to user’s requirements. Based on the weighted sliding window model, we propose a single pass algorithm, called WSW, to efficiently discover all the frequent itemsets from data streams. By analyzing data characteristics, an improved algorithm, called WSW-Imp, is developed to further reduce the time of deciding whether a candidate itemset is frequent or not. Empirical results show that WSW-Imp outperforms WSW under the weighted sliding window model.  相似文献   

12.
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is more likely to be changed as time goes by. Identifying the recent change of a data stream, especially for an online data stream, can provide valuable information for the analysis of the data stream. However, most of mining algorithms or frequency approximation algorithms over a data stream do not differentiate the information of recently generated data elements from the obsolete information of old data elements which may be no longer useful or possibly invalid at present. Therefore, they are not able to extract the recent change of information in a data stream adaptively. This paper proposes a data mining method for finding recently frequent itemsets adaptively over an online transactional data stream. The effect of old transactions on the current mining result of a data steam is diminished by decaying the old occurrences of each itemset as time goes by. Furthermore, several optimization techniques are devised to minimize processing time as well as memory usage. Finally, the performance of the proposed method is analyzed by a series of experiments to identify its various characteristics.  相似文献   

13.
近年来随着新的应用的出现,比如网络流量分析、在线事物分析和网络欺诈检测等,对数据流的挖掘成了一个越来越重要的课题。对于数据流频繁项集的挖掘,目前绝大部分的研究都集中在传统的窗口模式下进行,即时间衰退窗口模式、界标窗口模式和滑动窗口模式。Pauray S.M.Tsai于2009年提出了一种新的窗口模式:加权滑动窗口模式,并设计了两个基于此窗口模式的数据流频繁项集挖掘算法WSW和WSW-Imp,其中WSW-Imp是对WSW算法的改进。在研究了加权滑动窗口模式以及WSW-Imp算法的基础上,对WSW-Imp算法作了进一步的改进,设计了算法WSW-Imp2,并从理论上证明了WSW-Imp2算法比WSW-Imp算法更高效,实验结果也表明了这一点。  相似文献   

14.
We study the problem of maintaining a sketch of recent elements of a data stream. Motivated by applications involving network data, we consider streams that are asynchronous, in which the observed order of data is not the same as the time order in which the data was generated. The notion of recent elements of a stream is modeled by the sliding timestamp window, which is the set of elements with timestamps that are close to the current time. We design algorithms for maintaining sketches of all elements within the sliding timestamp window that can give provably accurate estimates of two basic aggregates, the sum and the median, of a stream of numbers. The space taken by the sketches, the time needed for querying the sketch, and the time for inserting new elements into the sketch are all polylogarithmic with respect to the maximum window size. Our sketches can be easily combined in a lossless and compact way, making them useful for distributed computations over data streams. Previous works on sketching recent elements of a data stream have all considered the more restrictive scenario of synchronous streams, where the observed order of data is the same as the time order in which the data was generated. Our notion of recency of elements is more general than that studied in previous work, and thus our sketches are more robust to network delays and asynchrony. The work of the authors was supported in part through NSF grants CNS 0520102 and CNS 0520009. A preliminary version of this paper appeared in Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC) 2006, pages 82–91. Work done while the third author was at Rensselaer Polytechnic Institute. Authors are listed in reverse alphabetical order.  相似文献   

15.
基于滑动窗口的异常检测是数据流挖掘研究的一个重要课题,在许多应用中数据流通常在一个分布网络上传输,解决这类问题时常采用分布计算技术,以便获得实时高质量的计算结果。对分布演化数据流上连续异常检测问题,进行形式化地阐述,提出了两个基于核密度估计的异常检测定义和算法,并通过大量真实数据集的实验,表明该算法具有良好的高效性和可扩展性,完全适应数据流应用的需求。  相似文献   

16.
面向数据流的频繁项集挖掘研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁项集挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集。然后,利用Count Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率。  相似文献   

17.
This paper describes a technique for clustering homogeneously distributed data in a peer-to-peer environment like sensor networks. The proposed technique is based on the principles of the K-Means algorithm. It works in a localized asynchronous manner by communicating with the neighboring nodes. The paper offers extensive theoretical analysis of the algorithm that bounds the error in the distributed clustering process compared to the centralized approach that requires downloading all the observed data to a single site. Experimental results show that, in contrast to the case when all the data is transmitted to a central location for application of the conventional clustering algorithm, the communication cost (an important consideration in sensor networks which are typically equipped with limited battery power) of the proposed approach is significantly smaller. At the same time, the accuracy of the obtained centroids is high and the number of samples which are incorrectly labeled is also small.  相似文献   

18.
Smartphones centralize a great deal of users’ private information and are thus a primary target for cyber-attack. The main goal of the attacker is to try to access and exfiltrate the private information stored in the smartphone without detection. In situations where explicit information is lacking, these attackers can still be detected in an automated way by analyzing data streams (continuously sampled information such as an application’s CPU consumption, accelerometer readings, etc.). When clustered, anomaly detection techniques may be applied to the data stream in order to detect attacks in progress. In this paper we utilize an algorithm called pcStream that is well suited for detecting clusters in real world data streams and propose extensions to the pcStream algorithm designed to detect point, contextual, and collective anomalies. We provide a comprehensive evaluation that addresses mobile security issues on a unique dataset collected from 30 volunteers over eight months. Our evaluations show that the pcStream extensions can be used to effectively detect data leakage (point anomalies) and malicious activities (contextual anomalies) associated with malicious applications. Moreover, the algorithm can be used to detect when a device is being used by an unauthorized user (collective anomaly) within approximately 30 s with 1 false positive every two days.  相似文献   

19.
SWFPM:一种有效的数据流频繁项挖掘算法*   总被引:1,自引:0,他引:1  
分析了数据流频繁项挖掘算法EC的不足之处,如不能准确地挖掘最近一段时间内数据流的频繁项。提出了一种频繁项样本特征复合四元组的数据结构来保存样本集合,在此基础上,提出了一种基于滑动窗口的数据流频繁项挖掘算法——SWFPM。该算法能准确地挖掘出该滑动窗口中的频繁项。实验数据采用IBM合成数据发生器产生的顾客购物数据和1998年世界杯官方网站的访问日志数据。实验结果表明,该算法具有很高的频繁项挖掘准确度、快速的数据处理能力。  相似文献   

20.
Continuously monitoring through time the correlation/distance of multiple data streams is of interest in a variety of applications, including financial analysis, video surveillance, and mining of biological data. However, distance measures commonly adopted for comparing time series, such as Euclidean and Dynamic Time Warping (DTW), either are known to be inaccurate or are too time-consuming to be applied in a streaming environment. In this paper we propose a novel DTW-like distance measure, called Stream-DTW (SDTW), which unlike DTW can be efficiently updated at each time step. We formally and experimentally demonstrate that SDTW speeds up the monitoring process by a factor that grows linearly with the size of the window sliding over the streams. For instance, with a sliding window of 512 samples, SDTW is about 600 times faster than DTW. We also show that SDTW is a tight approximation of DTW, errors never exceeding 10%, and that it consistently outperforms approximations developed for the case of static time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号