首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用稀土La掺杂Fe73.5Cu1Nb3Si13.5B9非晶合金,成功制备了稀土La改性的非晶带材。对制得的非晶带材进行热处理和显微组织分析,最后测试了带材的软磁性能。结果表明:添加La改变了非晶带材的晶化温度,随着La含量的增加,晶化温度呈下降趋势。显微金相分析表明带材表面存在纹路,且纹路随着热处理温度的变化而变化。带材中内应力分布不均造成带材的厚度随温度变化而波动。La原子加入后使非晶带材的尺寸波动范围变窄,尺寸波动的临界温度也由400℃下降到300℃;在550℃×0.5 h热处理工艺时,FeCuNbSiB(La-0.5wt%)带材综合软磁性能最佳,饱和磁感强度可达到1.7 T以上,磁导率为5306。  相似文献   

2.
将稀土La元素掺杂Fe78Si9B13合金,采用单辊法制备了FeSiB-La非晶带材,再将非晶带材在不同温度下进行退火处理。用DSC和XRD分析了带材的非晶形成能力和晶化行为,用阻抗分析仪测试了非晶带材的磁阻抗效应。结果表明,掺杂稀土La元素可提高带材的非晶形成能力,延缓带材中Fe-Si、Fe-B晶化相的析出,增强带材的热稳定性;Fe Si B-La非晶带材的磁阻抗效应随测试频率的升高和磁场强度的增大而增大;随退火温度升高,非晶带材的磁阻抗效应呈先增大后减小的趋势。  相似文献   

3.
将稀土La元素掺杂Fe73.5Cu1Nb3Si13.5B9合金,采用单辊法制备了FeCuNbSiB-La合金带材。用XRD分析了带材的晶化行为,用阻抗分析仪测试了带材的磁阻抗效应。结果表明,淬火态FeCuNbSiB-La合金带材为非晶态结构,经550℃晶化热处理后的FeCuNbSiB-La(0.5wt%)非晶带材形成了非晶和纳米晶双相共存结构;FeCuNbSiB-La非晶带材的磁阻抗效应随测试频率的升高和磁场强度的增大而增大,随稀土La元素含量的增大呈先增大后减小的趋势。  相似文献   

4.
本研究用软磁性能优良的铁基非晶软磁合金作为贴片电感的磁芯材料,通过XRD、TEM等分析测试研究了Fe73.5Cu1Nb3Si13.5B9 非晶软磁合金的热处理纳米晶化过程中的结构和组织形貌变化.结果证明:铁基非晶软磁Fe73.5Cu1Nb3Si13.5B9合金的晶化过程主要发生在500℃之后,当退火温度在520~600℃时,纳米晶粒晶化充分且分布较为均匀,使材料具有较好的软磁性能,这为贴片电感的制备莫定了基础.  相似文献   

5.
通过铜辊甩带法制备了成分为Fe73.5-xSi13.5B9Cu1Nb3Nix(x=0、1、2、3)的非晶带材,并对其进行退火处理。利用XRD、DSC、VSM和软磁直流测试仪等对带材的相结构、热稳定性以及软磁性能进行测试分析。结果表明,所制备合金带材淬火态下均为完全非晶结构,经560 ℃保温60 min退火处理后,合金中形成了非晶和α-Fe(Si)纳米晶双相共存结构。随着Ni含量的增加,整体上非晶带材的一级起始晶化温度Ts1和二级起始晶化温度Ts2先减小后增大,两级起始晶化温度之差ΔTs整体呈下降的趋势,由166.0 ℃下降至132.8 ℃,热稳定性降低。淬火态下,Ni元素的添加使得非晶带材的软磁性能有所恶化。经退火处理后,带材的软磁性能明显提升,当Ni含量x=1时,具有较好的软磁性能,其饱和磁化强度为157.7 emu/g,矫顽力为6.8 Oe。  相似文献   

6.
Zr-基块体非晶合金近玻璃转变温度热处理后的组织与性能   总被引:4,自引:1,他引:4  
选择在非晶合金的玻璃转变温度与晶化起始温度间的较低温度对Zr57Cu15.4Ni12.6Al10Nb5块体非晶合金进行了等温热处理,用X射线衍射、扫描电镜、显微硬度计与压缩试验,研究了等温热过程中非晶合金的组织结构变化及其对显微硬度与压缩性能的影响。结果表明,在近晶化温度下,一定时间的热处理会引起非晶合金的晶化。而在近玻璃转变温度下,较长时间的热处理也不会引起非晶合金出现明显的晶化和组织变化;但随着热处理时间的增长,合金的显微硬度有增大趋势,合金的压缩强度明显下降,断口形貌变化显著,断裂方式也逐渐由非晶态的断裂方式向晶态的断裂方式转变。  相似文献   

7.
退火条件对FeCuNbSiB非晶带材应力阻抗效应的影响   总被引:3,自引:2,他引:3  
研究了退火条件对非晶FeCuNbSiB带材应力阻抗性能的影响.结果表明,当退火温度为300℃时,FeCuNbSiB非晶带材开始慢慢晶化,当温度上升到500℃时,带材内部结构已由非晶态完全转变成晶态.当退火温度低于300℃时,退火能够消除部分应力,使阻抗变化的灵敏度提高;但当退火温度高于300℃时,随着退火温度的升高,应力阻抗效应减弱.退火时间超过1 h,延长退火时间,对带材的应力阻抗性能影响不大.非晶FeCuNbSiB带材经100℃×2 h的退火处理后,应力为2.7 MPa时,应力阻抗变化可达26%.  相似文献   

8.
FeCuNbSiB非晶纳米晶带材软磁性能和压磁性能研究   总被引:1,自引:0,他引:1  
本文主要研究了Fe73.5Cu1Nb3Si13.5B9纳米晶带材在不同的热处理工艺和压应力条件下的软磁性能变化情况.结果表明:带材在550℃×1h热处理工艺时将晶化成纳米晶材料,此时带材软磁性能最好;纳米晶带材的|μ|,受压应力影响大,尤其是在小于0.2MPa压应力作用下,软磁性能变化非常敏感,|μ|随压力增加而迅速下降;带材Q值在小于0.2MPa压应力作用下变化非常敏感,Q值随压力增加而迅速下降.当压应力大于0.2MPa时,Q值随压应力变化不明显,压应力不影响带材Q值随频率的变化规律.  相似文献   

9.
研究了退火条件对非晶FeCuNbSiB带材应力阻抗性能的影响。结果表明,当退火温度为300℃时,FeCuNbSiB非晶带材开始慢慢晶化,当温度上升到500℃时,带材内部结构已由非晶态完全转变成晶态。当退火温度低于300℃时,退火能够消除部分应力,使阻抗变化的灵敏度提高;但当退火温度高于300℃时,随着退火温度的升高,应力阻抗效应减弱。退火时间超过1h,延长退火时间,对带材的应力阻抗性能影响不大。非晶FeCuNbSiB带材经100℃×2h的退火处理后,应力为2.7MPa时,应力阻抗变化可达26%。  相似文献   

10.
朱正吼  宋晖 《热加工工艺》2004,(12):36-37,40
研究了热处理工艺对FeSiB非晶带材韧性的影响情况,结果表明.当退火温度为300℃时,FeSiB非晶带材开始慢慢晶化,当温度上升到500℃时,带材内部结构已由非晶态完全转变成晶态。退火温度对非晶带材的脆化起决定作用,退火温度越高,带材脆化程度越大,250℃是带材脆化的临界温度。当保温时间低于临界脆化时间时,带材脆化程度随时间逐渐上升。保温时间达到临界脆化时间时,带材脆化程度趋于稳定。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号