首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
在考虑齿轮啮合刚度的情况下,研究了齿轮宽度、模数、压力角、螺旋角、齿轮相对轴承的安装位置以及轴承组合形式对转子-轴承系统稳定性的影响,发现除压力角外,其它参数对系统稳定性的影响非常明显,根据结论选择系统结构参数时,可保证系统稳定运行。  相似文献   

2.
研究了齿轮耦合轴系结构参数匹配对系统不平衡响应的影响.结果表明,齿轮耦合轴系的不平衡响应幅值的大小取决于系统转子之间的参数匹配,参数匹配得当,齿轮耦合将会对系统的不平衡响应起到很好的抑制作用,反之,将加剧系统的不平衡响应.  相似文献   

3.
针对汽车轮边行星减速系统在行驶过程中由于支撑条件恶化造成的振动噪声问题,在考虑轴承运转位移变形的基础上,引入压力角和重合度随时间变化的概念,建立齿圈固定,太阳轮与支架分别为动力输入,输出的轮边行星齿轮系统动力学模型,研究了压力角和重合度随时间变化和为常数两种情况下的模型动力学响应变化规律。分析结果表明,压力角和重合度可以分别与时间建立相关数值关系,太阳轮与行星轮压力角和重合度均随时间呈现波动变化;啮合变形在压力角和重合度为变量时的动态响应要比压力角与重合度为常数时存在更多的频率成分;在轴承刚度越小的状态下,齿轮啮合变形在动态响应方面存在较多的频率成分;行星齿轮总成在压力角和重合度随时间变化的条件下比压力角和重合度为常数时的动态径向位移较大,常数条件下太阳轮径向位移近似为直线。  相似文献   

4.
齿轮-转子-轴承系统的动力特性试验研究   总被引:2,自引:0,他引:2  
在具有不对中和质量不平衡的齿轮 -转子 -轴承系统试验台上 ,通过改变系统的转速、速比和齿轮的位置 ,进行了动力学试验研究。试验结果证明了理论研究所得出的结论 ,即一个转子上的不平衡质量能够导致系统中每一个转子产生同频振动 ;当某一子系统存在不对中故障时 ,不仅在单转子 -轴承系统的响应中 ,而且 ,在整个系统响应中 ,将含有倍频成份  相似文献   

5.
讨论了聚合或粘弹性轴承支撑对轴承转子系统不平衡响应的影响。在详细分析的基础上,设计了计算粘弹性支撑参数的程序。计算结果表明:合理地选择粘弹性支撑参数和材料,可以在较宽频域内降低轴承转子系统的不平衡响应。  相似文献   

6.
陈红霞  陈国定  李盼 《润滑与密封》2013,38(1):66-69,73
由于齿轮啮合力相对于一般转子具有特殊性,用于齿轮传动系统的椭圆轴承受有偏斜于垂直方向的载荷。将轴承载荷用一个偏载角和合力表示,将油膜压力分布沿偏载方向及其垂直方向积分,通过迭代偏心率和偏位角,使得轴承沿偏载方向的承载力与轴承承受的齿轮啮合力相等,以此进行椭圆轴承的压力分布和承载能力的计算,分析偏载角度对轴承静动特性的影响。结果表明,偏载角度的存在会使轴承工作静平衡位置发生变化,从而导致其压力分布发生偏移,相应的静动特性参数也会发生变化;偏载角度对椭圆轴承的动特性具有较大的影响,因此,在进行齿轮-轴承系统动力学分析时,考虑偏载角度影响更符合实际。  相似文献   

7.
《机械传动》2013,(9):118-121
以膨胀机子系统为研究对象,考虑静态传递误差,建立了斜齿轮啮合副动力学模型,同时考虑转子系统的影响,建立了三平行轴系齿轮转子系统有限元模型;对齿轮弯-扭耦合膨胀机子系统进行了不平衡响应分析,同时考虑轴承刚度、齿轮螺旋角对齿轮动态啮合力的影响。研究表明,膨胀机子系统因为齿轮的耦合振动而明显加剧,齿轮耦合使系统振型表现为耦合振型,因此必须以耦合的方式分析系统的振动特性;轴承处刚度及螺旋角对相对应的齿轮啮合处的动态啮合力影响很大,甚至使动态啮合力峰值发生了偏移,为转子系统轴承刚度的确定以及齿轮的设计都提供了较好的理论基础。  相似文献   

8.
为了降低燃气轮机齿轮转子系统不平衡响应,采用了耦合转子动力学方法对系统进行分析评价,在考虑齿轮啮合及轴承动力特性系数的基础上,利用传递矩阵法分别建立了两单轴转子的弯曲振动分析模型,推导了人字齿轮耦合单元的传递矩阵,应用整体传递矩阵建立了人字齿轮转子系统的弯扭耦合振动分析模型,对某燃气轮机齿轮-转子-轴承系统进行了振动特性分析。通过数值计算与分析,获得单轴转子以及齿轮耦合转子的不平衡响应。研究结果表明,该齿轮耦合使转子系统不平衡响应增大,同时传动系统的工作转速远离临界转速,系统处于安全稳定状态。  相似文献   

9.
以某大型离心压缩机转子系统为研究对象,考虑膜片联轴器和5瓦可倾瓦轴承的影响,首先建立转子-轴承系统的有限元模型;然后按照相关标准进行不平衡响应计算,分析了各种轴承参数,如长径比、间隙比以及润滑油型号对轴颈振幅的影响;最后将所得到的结果与工厂试车数据进行了对比分析,研究结果可为压缩机转子系统轴承参数选择提供理论参考.  相似文献   

10.
随着机车速度的提高,对机车的运行安全性和稳定性提出了更高的要求。考虑不平衡质量、齿轮啮合刚度、轴承支撑刚度和轮轨接触的影响下,建立机车传动系统有限元单元动态模型。其次,采用迭代法,求取了临界转速值及振型响应。分析齿轮啮合刚度、轴承支撑刚度、轮轨接触力作用下,传动系统齿轮单元幅频响应变化。结果表明:复杂环境因素下,传动系统齿轮啮合频率及固有频率处,系统振动响应较大。轴承通过频率的振动响应微弱。轮轨接触刚度影响下,传动系统啮合频率、固有频率及轴承通过频率的振动响应受到极大干扰。  相似文献   

11.
行星齿轮传动因具有较大的传动比和较高的传动效率而被广泛应用于机械传动系统中。在行星齿轮箱中,太阳轮通常被设置为浮动的,以平衡各行星齿轮之间的负载。但是,太阳轮的浮动设置将导致啮合过程中的压力角、重合度和啮合相位的变化。在以前的研究中,这些参数被近似为常数。为了研究动态参数对行星齿轮箱在不同工况下振动响应的影响,建立了行星齿轮箱集总参数模型,该模型包含时变压力角、时变重合度和时变啮合相位。基于该模型,分析了太阳轮的振动机理,并与恒定参数模型进行比较,揭示了由这些动态参数引起的相位调制规律。通过比较不同负载和转速下的动态响应,研究了不同工况条件下的相位调制。  相似文献   

12.
Considering flexible shafts, a coupled dynamic model for the gear transmission system of wheel reducer used in electric vehicle was developed. By combining the acoustics finite element modal for housing in Virtual Lab and the coupled dynamic model for gear transmission system, a simulation method was proposed for the prediction of the radiation noise for the wheel reducer. Then, the effects of different macro geometry gear parameters including pressure angle and helical angle on the dynamic response and radiation noise were investigated under the rated working condition. Results show that the peak-peak value of the transmission error dramatically falls in the starting zone, followed by an upward trend with the increase of the pressure angle for the low speed stage gear pair. The minimum transmission error and vibration acceleration occur when the pressure angle is 17°. The increase of the pressure angle does not affect the sound pressure level at the field point obviously. The design case with 17° pressure angle shows the optimum radiation noise level, which is 4.41dB less than the original model. Compared to the pressure angle, the helix angle has a major influence on the transmission error, vibration acceleration and acoustic radiation noise. With the increase of the helix angle, the time-varying transmission error curve becomes more smooth with a lower peak-peak value. Besides, the increase of helix angle results in lowering the varying and fluctuating trend of both vibration acceleration and acoustic radiation noise. The design case with 24° helix angle shows the prime radiation noise level, which is 7 dB less than the original scheme.  相似文献   

13.
基于正交试验的大型离心压缩机轴承参数优化   总被引:1,自引:0,他引:1  
轴承参数的选取是影响转子系统稳定性的主要因素,为此提出了基于正交试验的轴承参数优化设计的思想,并在某大型离心压缩机低压缸转子系统中进行应用,通过确定优选的轴承参数,综合评估了轴承参数对轴承-转子系统的稳定性和轴颈振幅的影响。对优化结果进行方差分析和F检验,找到影响系统稳定性和轴颈振幅的显著因子和不显著因子,所得结论对压缩机转子系统设计具有指导意义。  相似文献   

14.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

15.
针对双浮动端面密封的结构,建立密封二维轴对称非线性接触模型,提取浮动密封环谷半径和锥面角两个关键参数,利用有限元方法计算并分析这两个参数和橡胶O形圈压缩率对密封性能的影响。结果表明:随着浮动环谷半径和锥面角的增大,O形圈von Mises应力、接触压力、密封端面相对变形及轴向力相应增大;锥面角对以上性能参数的影响随着谷半径的增大而显著增加;轴向力同O形圈压缩率成正比,且增幅随着压缩率的增大而增大;浮动环端面产生由内径向外径处呈发散型的变形。通过设计浮动密封轴向力测量装置,实验验证有限元计算模型具有较好的可靠性。  相似文献   

16.
BELT装置硬质合金顶锤的有限元分析   总被引:3,自引:0,他引:3  
王强  蔡冬梅 《机械设计》2004,21(6):13-15
建立了人造金刚石BELT合成装置硬质合金顶锤的有限元分析模型。采用耦合分析方法,综合考虑合成压力、径向预紧力和热应力的作用,获得了顶锤内部的应力场,阐述了破坏机理。对径向预紧力的作用和最佳数值进行了分析。通过分析顶锤半锥角、高径比等参数对应力分布的影响,提出了结构优化的方法。  相似文献   

17.
由于变齿厚渐开线啮合副变位系数沿轴向变化的特点,其啮合角、锥角、重合度、不同端截面齿顶圆上的压力角、滑动率等参数与普通渐开线啮合副不同,其啮合效率计算也与普通渐开线啮合副有所区别.分析了变齿厚齿轮啮合副效率的计算特点和影响因素,如变位系数对变齿厚齿轮副重合度和啮合效率的影响;在此基础上,提出了一种新型效率计算方法;通过...  相似文献   

18.
基于有限元分析软件Abaqus建立旋转唇密封模型,计算得到其静态接触压力和径向变形影响系数矩阵,然后通过油封数值计算模型计算得到其泵吸率;在工况一定的情况下,分析理论接触宽度、前唇角、后唇角、过盈量、腰厚结构参数对密封性能的影响,并应用田口实验法进行正交试验设计,以信噪比作为衡量泵吸率稳定性的指标,得到影响密封可靠性的最佳参数组合;应用响应曲面分析,得到油封的极限状态方程,并通过蒙特卡洛法计算基于结构参数的油封可靠度。结果表明:各结构参数对泵吸率的影响排序依次是理论接触宽度、前唇角、后唇角、过盈量、腰厚;所研究油封的密封可靠度为0.999 87。  相似文献   

19.
以一种静液驱动插装式高压安全阀为研究对象,根据静液驱动系统及安全阀的工作原理,运用AMESim仿真软件建立静液驱动插装式高压安全阀仿真模型。通过对高压安全阀阻尼孔、弹簧预紧力、阀芯锥角结构进行参数设置并批量仿真,对比分析得到了不同结构参数对高压安全阀压力特性的影响。设计了试验回路,通过搭建压力性能试验平台,测量得到试验曲线,与仿真结果进行对比,验证了仿真结果的准确性。为插装式高压安全阀的结构优化和选型提供指导性建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号