首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao Z  Myllylä R 《Applied optics》2005,44(36):7845-7852
We present and apply a novel method, the scattering photoacoustic (SPA) technique, for measuring optical parameters in weakly absorbing, highly scattering suspensions. In this method, a solid absorber is in contact with a suspension sample to permit the photoacoustic detection of the sample's light-scattering properties. We conducted measurements conducted to determine the reduced scattering coefficients of Intralipid suspensions with a concentration range of 0.1-5%, and the results are in good agreement with those achieved by other researchers. Moreover, we also illustrate the relationship between the amplitude of the SPA signal and absorption, scattering, and detection distance. Through a study of Intralipid-ink mixes, we demonstrate that the SPA technique has the ability to determine simultaneously the absorption and reduced scattering coefficients of turbid media. This new technique has low cost and is noninvasive, and it enables on-line measurements to be made.  相似文献   

2.
While the thermomechanical properties of sapphire make it an excellent candidate of test mass for advanced laser interferometers, its optical quality is not well understood or well controlled. We have studied the results from high-resolution measurements of scattering, absorption, and birefringence in test-mass samples to better understand issues of quality. Samples show large-scale scattering structures clearly linked to the crystal-growth process. Samples characterized by the presence of point defects have significantly lower scattering (except at the point defects). In general on a large scale, high scattering also correlates with higher absorption and higher average birefringence inhomogeneity. However, on a smaller scale there is not a clear point-to-point correlation between scattering and absorption. Often a large-scale scattering structure is spatially displaced by tens of millimeters from a similar absorption structure, indicating that quite separate microscopic mechanisms give rise to scattering and absorption. The spatial displacements indicate that absorption centers and scattering centers are laid down during crystal growth at different distances from the solid-liquid interface. We suggest that absorption may be linked to F centers, while scattering may be linked to impurities such as iron.  相似文献   

3.
In this paper, the development of a new methodology for the quantitative determination of the optical absorption coefficient in simple systems in which the light absorption follows Beer’s law is described. An approximation of the heat diffusion model of the photoacoustic effect for thermally thick samples is explored. It was found that we could combine the amplitude and the phase of the photoacoustic signal to obtain a new analytical expression for the optical absorption coefficient. This expression is directly proportional to the normalized photoacoustic signal amplitude, the sine of the phase difference, and the heat capacity per unit of volume of the sample. The theoretical results were experimentally verified in the visible range (300 nm to 700 nm). The optical absorption coefficient obtained with this methodology was comparable to that obtained by UV–Vis spectroscopy.  相似文献   

4.
Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores. Several theoretical models have been validated for diffuse photon propagation in highly scattering and low-absorbing media that describe the optical appearance of tissues in the near-infrared (NIR) region. However, these models are not generally applicable to quantitative optical investigations in the visible because of the significantly higher tissue absorption in this spectral region compared with that in the NIR. We performed photon measurements through highly scattering and absorbing media for ratios of the absorption coefficient to the reduced scattering coefficient ranging approximately from zero to one. We examined experimentally the performance of the absorption-dependent diffusion coefficient defined by Aronson and Corngold [J. Opt. Soc. Am. A 16, 1066 (1999)] for quantitative estimations of photon propagation in the low- and high-absorption regimes. Through steady-state measurements we verified that the transmitted intensity is well described by the diffusion equation by considering a modified diffusion coefficient with a nonlinear dependence on the absorption. This study confirms that simple analytical solutions based on the diffusion approximation are suitable even for high-absorption regimes and shows that diffusion-approximation-based models are valid for quantitative measurements and tomographic imaging of tissues in the visible.  相似文献   

5.
孙正  闫向阳 《声学技术》2020,39(1):1-10
生物光声层析(Photoacoustic Tomography,PAT)成像可以反映生物组织的光吸收分布,定量测量组织的光吸收系数和散射系数,进而分析组织成分,为疾病的早期诊断和治疗提供可靠的依据。由于成像目标特殊的几何结构以及成像装置的机械结构、空间位置和成像时间等的限制,超声探测器只能在有限的角度范围内扫描,采集到稀疏的光声测量数据,导致重建图像中出现伪影和失真。针对有限角度扫描和稀疏测量数据问题,对目前主流的光声图像重建算法进行综述和分析。  相似文献   

6.
Xu Y  Gu X  Fajardo LL  Jiang H 《Applied optics》2003,42(16):3163-3169
We report on in vivo absorption and scattering imaging of a human breast cyst and implant, using a reconstruction algorithm based on our third-order diffusion equations. To validate these in vivo images, a series of phantom experiments were conducted, in which we used low-absorbing and low-scattering heterogeneities to mimic a breast cyst or implant. These heterogeneities or targets were composed of pure water or a mixture of water and very dilute Intralipid (0.05% and 0.1%). The phantom experiment confirmed the quantitative imaging capability of our improved algorithm for reconstructing heterogeneities where the conventional diffusion approximation is inadequate. Pilot clinical results from female volunteers indicate that enhanced diffuse optical tomography can quantitatively image findings such as breast cysts or implants in which the absorption and scattering coefficients are usually low.  相似文献   

7.
Schweiger M  Arridge SR 《Applied optics》1997,36(34):9042-9049
Reconstruction methods for optical tomographic imaging require the development of models of light transport in highly scattering materials. While the simulation of the full temporal response function arising from a short source light pulse is computationally expensive, there are methods to evaluate efficiently certain transforms of the temporal profile. We previously presented methods to obtain directly the Mellin Transform, which is related to the moments of the temporal intensity distribution; We introduce a similar method to calculate directly the Laplace transform. This method provides an addtional, largely independent measurement type that can be combined with the moments to improve image quality in optical tomography, in particular with respect to the simultaneous reconstruction of absorption and scattering distribution.  相似文献   

8.
The anesthetic agent propofol (2,6-diisopropylphenol) is the most widely used intravenously administered drug in general anesthesia. However, a viable online capability to monitor metabolized levels of propofol in patients does not currently exist. Here we show for the first time that optical spectroscopy has good potential to detect metabolized propofol from patients' exhaled breath. We present quantitative absorption measurements of gas phase propofol both in the ultraviolet and middle-infrared spectral regions. We demonstrate that a detection limit in the subparts-per-billion concentration range can be reached with photoacoustic spectroscopy in the UV spectral region, paving the way for the development of future optical monitors.  相似文献   

9.
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.  相似文献   

10.
Tan Y  Jiang H 《Applied optics》2008,47(12):2011-2016
We describe a method that combines fluorescence molecular tomography (FMT) with diffuse optical tomography (DOT), which allows us to study the impact of heterogeneous optical property distribution on FMT, an issue that has not been systemically studied. Both numerical simulations and phantom experiments were performed based on our finite-element reconstruction algorithms. The experiments were conducted using a noncontact optical fiber free, multiangle transmission system. In both the simulations and experiments, a fluorescent target was embedded in an optically heterogeneous background medium. The simulation results clearly suggest the necessity of considering the absorption coefficient (mu(a)) and reduced scattering coefficient (mu'(s)) distributions for quantitatively accurate FMT, especially in terms of the accuracy of reconstructed fluorophore absorption coefficient (mu(a(x-->m))). Subsequent phantom experiments with an indocyanine green (ICG)-containing target confirm the simulation findings. In addition, we performed a series of phantom experiments with low ICG concentration (0.1, 0.2, 0.4, 0.6 and 1.0 microM) in the target to systematically evaluate the quantitative accuracy of our FMT approach. The results indicate that, with the knowledge of optical property distribution, the accuracy of the recovered fluorophore concentration is improved significantly over that without such a priori information. In particular absolute value of mu(a(x-->m) ) from our DOT guided FMT are quantitatively consistent with that obtained using spectroscopic methods.  相似文献   

11.
Photoacoustic signal generation by metal nanoparticles relies on the efficient conversion of light to heat, its transfer to the environment, and the production of pressure transients. In this study we demonstrate that a dielectric shell has a strong influence on the amplitude of the generated photoacoustic signal and that silica-coated gold nanorods of the same optical density are capable of producing about 3-fold higher photoacoustic signals than nanorods without silica coating. Spectrophotometry measurements and finite difference time domain (FDTD) analysis of gold nanorods before and after silica coating showed only an insignificant change of the extinction and absorption cross sections, hence indicating that the enhancement is not attributable to changes in absorption cross section resulting from the silica coating. Several factors including the silica thickness, the gold/silica interface, and the surrounding solvent were varied to investigate their effect on the photoacoustic signal produced from silica-coated gold nanorods. The results suggest that the enhancement is caused by the reduction of the gold interfacial thermal resistance with the solvent due to the silica coating. The strong contrast enhancement in photoacoustic imaging, demonstrated using phantoms with silica-coated nanorods, shows that these hybrid particles acting as "photoacoustic nanoamplifiers" are high efficiency contrast agents for photoacoustic imaging or photoacoustic image-guided therapy.  相似文献   

12.
This paper presents the new method of computation of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. The simple equation for computations of the optical absorption coefficient spectrum from the normalized photoacoustic amplitude spectrum is derived and discussed. This model applied for computations of the optical absorption coefficient spectrum of thin germanium samples, deposited on the transparent glass substrate, from their photoacoustic spectra proved its correctness and usefulness.  相似文献   

13.
Yuan Z  Jiang H 《Applied optics》2007,46(14):2757-2768
What we believe to be a novel 3D diffuse optical tomography scheme is developed to reconstruct images of both absorption and scattering coefficients of finger joint systems. Compared with our previous reconstruction method, the improved 3D algorithm employs both modified Newton methods and an enhanced initial value optimization scheme to recover the optical properties of highly heterogeneous media. The developed approach is tested using simulated, phantom, and in vivo measurement data. The recovered results suggest that the improved approach is able to provide quantitatively better images than our previous algorithm for optical tomography reconstruction.  相似文献   

14.
A 32-channel time-resolved imaging device for medical optical tomography has been employed to evaluate a scheme for imaging the human female breast. The fully automated instrument and the reconstruction procedure have been tested on a conical phantom with tissue-equivalent optical properties. The imaging protocol has been designed to obviate compression of the breast and the need for coupling fluids. Images are generated from experimental data with an iterative reconstruction algorithm that employs a three-dimensional (3D) finite-element diffusion-based forward model. Embedded regions with twice the background optical properties are revealed in separate 3D absorption and scattering images of the phantom. The implications for 3D time-resolved optical tomography of the breast are discussed.  相似文献   

15.
Safrani A  Abdulhalim I 《Applied optics》2011,50(18):3021-3027
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.  相似文献   

16.
Zhang E  Laufer J  Beard P 《Applied optics》2008,47(4):561-577
A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 microm with an optically defined element size of 64 microm. Two sensors were used, one with a 22 microm thick polymer film spacer and the other with a 38 mum thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 microm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 microm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 microm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.  相似文献   

17.
Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.  相似文献   

18.
Macroscopic optical imaging has rather humble technical origins; it has been mostly implemented by photographic means using appropriate filters, a light source and a camera yielding images of tissues. This approach relates to human vision and perception, and is simple to implement and use. Therefore, it has found wide acceptance, especially in recording fluorescence and bioluminescence signals. Yet, the difficulty in resolving depth and the dependence of the light intensity recorded on tissue optical properties may compromise the accuracy of the approach. Recently, optical technology has seen significant advances that bring a new performance level in optical investigations. Quantitative real-time multi-spectral optical and optoacoustic (photoacoustic) methods enable high-resolution quantitative imaging of tissue and disease biomarkers and can significantly enhance medical vision in diagnostic or interventional procedures such as dermatology, endoscopy, surgery, and various vascular and intravascular imaging applications. This performance is showcased herein and examples are given to illustrate how it is possible to shift the paradigm of optical clinical translation.  相似文献   

19.
We present an algorithm that explicitly utilizes the wavelength dependence of tissue optical properties for diffuse optical tomography. We have previously shown that the method gives superior separation of absorption and scattering. Here the technique is described and tested in detail, and optimum wavelength sets for a broad range of chromophore combinations are discovered and analyzed.  相似文献   

20.
A photoacoustic detector based on the optical cantilever microphone has been built. The detector is capable of measuring solid-, liquid-, and gas-phase samples. Photoacoustic Fourier transform infrared (FT-IR) measurement with three samples in different phases was demonstrated. Example samples were polyethene, sunflower oil, and methane. The sensitivity of the cell was compared to a commercial photoacoustic FT-IR detector. With the standard carbon black sample the cantilever detector gave approximately five times higher signal-to-noise ratio than the reference detector. The sensitivity with methane was also compared to the DTGS detector of the FT-IR instrument corresponding to an absorption path of 6.3 cm. Simulation of the photoacoustic signal showed that a compromise has to be made in the cell design between sensitivity for solid- and gas-phase samples but it is possible to highly enhance the sensitivity for all types of samples by reducing cantilever dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号