首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. The mu-opioid receptor was closely associated with the somatic plasmalemma of the dorsal root ganglion neurons. Both mu-opioid receptor-immunoreactive nerve fibers and cell bodies were observed in lamina II of the dorsal horn. The highest intensity of mu-opioid receptor-like immunoreactivity was observed in the deep part of lamina II. Most mu-opioid receptor-like immunoreactivity in the dorsal horn originated from spinal neurons. A few mu-opioid receptor-positive peripheral afferent terminals in the rat and monkey dorsal horn were calcitonin gene-related peptide-immunoreactive. In addition to pre- and post-junctional receptors in rat and monkey dorsal horn neurons, mu-opioid receptors were localized on the presynaptic membrane of some synapses of primary afferent terminals in the monkey dorsal horn. Peripheral axotomy caused a reduction in the number and intensity of mu-opioid receptor-positive neurons in the rat and monkey dorsal root ganglia, and of mu-opioid receptor-like immunoreactivity in the dorsal horn of the spinal cord. The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.  相似文献   

2.
Immunocytochemical localization of metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (NMDA-type: NMDAR1 and NMDAR2A-C; AMPA-type: GluR1-4) was performed on sections of rat dorsal horn. Immunoreactivity for mGluR1 alpha was detected in laminae I-III of the dorsal horn, whilst mGluR2/3 immunoreactivity was detected primarily in lamina III. Immunoreactivity for NMDAR1, GluR1, GluR2, GluR2/3, GluR4 and GluR5/6/7 was strongly localized in neuronal elements of laminae I-III. Immunoreactivity for NMDAR2B was localized in laminae I-III. No mGluR5, NMDAR2A and NMDAR2C immunoreactivity was detected. In addition, immunoreactivity for receptors was found to co-localize with immunoreactivity for glutamate in the dorsal horn. The present results indicate that glutamate receptors are differentially localized in neuronal elements of dorsal horn where receptor-neurotransmitter interaction takes place.  相似文献   

3.
4.
In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat lumbar (L) 5 dorsal root ganglion (DRG) and areas where afferents from the DRG terminate, the L5 spinal cord and gracile nuclei, following unilateral sciatic nerve transection or crush. From 3 days to 4 weeks following cut or crush injury, the percentage of medium and large BDNF-immunoreactive neurons in the ipsilateral DRG increased significantly compared with those on the contralateral side. Following cut injury, there was no significant change in the percentage of small BDNF-immunoreactive neurons in the ipsilateral DRG; however, the intensity of immunoreactivity of these cells decreased. Following crush injury, however, both the percentage and intensity of small BDNF-immunoreactive neurons in the ipsilateral DRG significantly increased. Following cut injury, the expression of BDNF-immunoreactive axonal fibers decreased markedly in the ipsilateral superficial laminae of the L5 spinal cord and increased significantly in the ipsilateral deeper laminae of the spinal cord and gracile nuclei. Crush injury induced a marked increase in the expression of BDNF-immunoreactive axonal fibers in the superficial laminae of the spinal cord and gracile nuclei. These differences in BDNF response in the DRG and spinal cord after cut or crush injuries may reflect differences in trophic support to the injured DRG neurons and altered neuronal activity in the spinal cord and gracile nuclei following different types of peripheral nerve injury.  相似文献   

5.
Two mouse monoclonal antibodies, 11H9.1 and 1G7.10, raised against the COOH-terminus peptide (359-390) of the rat neurokinin-2 receptor, were used to visualize by light and electron microscope immunocytochemistry the distribution of this receptor in adult rat spinal cord. At all spinal levels, immunoreactivity was mainly observed in two narrow crescentic zones bordering the gray matter of the dorsal and ventral horns, and around the central canal. In the light microscope, this labelling was the densest within the outer part of lamina I facing the dorsal column, where it took the form of minute dots and streaks scattered in the neuropil. In the electron microscope, such a localization was exclusively astrocytic and essentially involved astrocytic leaflets, as indicated by the size and irregular shape of the immunostained processes, their location between and around neuronal profiles, and their occasional display of glial filaments. The diaminobenzidine reaction product showed some predilection for the plasma membrane and was occasionally seen at gap junctions of these labelled processes. Many labelled astrocytic leaflets were observed in the immediate vicinity of axon terminals containing large dense-cored vesicles, and around fibres morphologically identifiable as primary afferent, unmyelinated C-fibres. These observations suggest that astrocytic neurokinin-2 receptors could define the effective sphere of neurokinin A neuromodulation in rat spinal cord, via alterations in the regulation of the extracellular environment and glutamate uptake by astrocytes and/or the release of putative astroglial mediators. The astrocyte neurokinin-2 receptors, activated by extrasynaptic neurokinin A, might thus co-operate with neurokinin-1 and neurokinin-3 neuronal receptors in the modulation of nociceptive information.  相似文献   

6.
Dorsal root afferent depolarization and antidromic firing were studied in isolated spinal cords of neonatal rats. Spontaneous firing accompanied by occasional bursts could be recorded from most dorsal roots in the majority of the cords. The afferent bursts were enhanced after elevation of the extracellular potassium concentration ([K+]e) by 1-2 mM. More substantial afferent bursts were produced when the cords were isolated with intact brain stems. Rhythmic afferent bursts could be recorded from dorsal roots in some of the cords during motor rhythm induced by bath-applied serotonin and N-methyl--aspartate (NMDA). Bilaterally synchronous afferent bursts were produced in pairs of dorsal roots after replacing the NaCl in the perfusate with sodium-2-hydroxyethansulfonate or after application of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline with or without serotonin (5-HT) and NMDA. Antidromic afferent bursts also could be elicited under these conditions by stimulation of adjacent dorsal roots, ventrolateral funiculus axons, or ventral white commissural (VWC) fibers. The antidromic bursts were superimposed on prolonged dorsal root potentials (DRPs) and accompanied by a prolonged increase in intraspinal afferent excitability. Surgical manipulations of the cord revealed that afferent firing in the presence of bicuculline persisted in the hemicords after hemisection and still was observed after removal of their ventral horns. Cutting the VWC throughout its length did not perturb the bilateral synchronicity of the discharge. These findings suggest that the activity of dorsal horn neurons is sufficient to produce the discharge and that the bilateral synchronicity can be maintained by cross connectivity that is relayed from side to side dorsal to the VWC. Antagonists of GABAB, 5-HT2/5-HT1C, or glutamate metabotropic group II and III receptors could not abolish afferent depolarization in the presence of bicuculline. Depolarization comparable in amplitude to DRPs, could be produced in tetrodotoxin-treated cords by elevation of [K+]e to the levels reported to develop in the neonatal rat spinal cord in response to dorsal root stimulation. A mechanism involving potassium transients produced by neuronal activity therefore is suggested to be the major cause of the GABA-independent afferent depolarization reported in our study. Possible implications of potassium transients in the developing and the adult mammalian spinal cord are discussed.  相似文献   

7.
We evaluated the suppression of spinal Fos-like immunoreactivity (FLI) by i.v. anesthetics in the rat formalin model. Preformalin injection (1.5% subcutaneously) treatment groups included i.v. saline controls and three i.v. GABAergic anesthetic groups (pentobarbital 20 mg/kg, propofol 10 mg/kg, or alphaxalone 1.5 mg/kg; n = 12 per group). After perfusion 2 h postformalin, spinal cords were dissected, sliced at 30 microm, and processed by immunoperoxidase staining with an antibody against the Fos protein. Quantification and determination of the laminar distribution of Fos-labeled nuclei were performed at the L4-5 spinal level ipsilateral to formalin injection. Drug groups demonstrating FLI suppression were comparatively studied in a 5-min postformalin treatment group. Pentobarbital pretreatment failed to suppress FLI. However, significant reductions (percent decrease) of FLI were observed with propofol (63%) and alphaxalone (30%) compared with saline controls. Pre- versus postformalin comparison studies showed that propofol, but not alphaxalone, suppressed FLI more effectively when given preformalin. Given the observed inconsistencies between this study of Fos expression and our previous behavioral study, it is questionable whether anesthetic modulation of noxious stimulus-induced FLI parallels that of behavioral responses. Implications: In this study, we examined whether i.v. general anesthetics (propofol, alphaxalone, and pentobarbital) prevent injury-induced spinal cord changes. We measured spinal Fos protein after rats received anesthetics before versus after a formalin injection. Fos inhibition patterns were inconsistent with behavioral studies of these anesthetics, suggesting that Fos inhibition does not always correlate with behavioral analgesia.  相似文献   

8.
The effect of three peptides, galanin, sulfated cholecystokinin octapeptide, and neurotensin (NT), was studied on acutely extirpated rat dorsal root ganglia (DRGs) in vitro with intracellular recording techniques. Both normal and peripherally axotomized DRGs were analyzed, and recordings were made from C-type (small) and A-type (large) neurons. Galanin and sulfated cholecystokinin octapeptide, with one exception, had no effect on normal C- and A-type neurons but caused an inward current in both types of neurons after sciatic nerve cut. In normal rats, NT caused an outward current in C-type neurons and an inward current in A-type neurons. After sciatic nerve cut, NT only caused an inward current in both C- and A-type neurons. These results suggest that (i) normal DRG neurons express receptors on their soma for some but not all peptides studied, (ii) C- and A-type neurons can have different types of receptors, and (iii) peripheral nerve injury can change the receptor phenotype of both C- and A-type neurons and may have differential effects on these neuron types.  相似文献   

9.
The response of the mature central nervous system (CNS) to injury differs significantly from the response of the peripheral nervous system (PNS). Axotomized PNS neurons generally regenerate following injury, while CNS neurons do not. The mechanisms that are responsible for these differences are not completely known, but both intrinsic neuronal and extrinsic environmental influences are likely to contribute to regenerative success or failure. One intrinsic factor that may contribute to successful axonal regeneration is the induction of specific genes in the injured neurons. In the present study, we have evaluated the hypothesis that expression of the immediate early gene c-jun is involved in a successful regenerative response. We have compared c-Jun expression in dorsal root ganglion (DRG) neurons following central or peripheral axotomy. We prepared animals that received either a sciatic nerve (peripheral) lesion or a dorsal rhizotomy in combination with spinal cord hemisection (central lesion). In a third group of animals, several dorsal roots were placed into the hemisection site along with a fetal spinal cord transplant. This intervention has been demonstrated to promote regrowth of severed axons and provides a model to examine DRG neurons during regenerative growth after central lesion. Our results indicated that c-Jun was upregulated substantially in DRG neurons following a peripheral axotomy, but following a central axotomy, only 18% of the neurons expressed c-Jun. Following dorsal rhizotomy and transplantation, however, c-Jun expression was upregulated dramatically; under those experimental conditions, 63% of the DRG neurons were c-Jun-positive. These data indicate that c-Jun expression may be related to successful regenerative growth following both PNS and CNS lesions.  相似文献   

10.
Electrophysiological studies have shown that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of the primary motor area (M1) can produce a local decrease in excitability. Functional imaging data suggest that this change may be bilateral. In normal subjects, we measured motor evoked potential (MEP) amplitude at a series of stimulation intensities in the contralateral M1 before and after 15 min of active or sham rTMS at just above the MEP threshold. The slope of the curve relating MEP amplitude and stimulation intensity was decreased in the unstimulated hemisphere by active but not sham rTMS. This demonstrates that rTMS can condition cortical excitability at a distance of one or more synapses and suggest that decreased excitability to TMS is a correlate of decreased blood flow and metabolism.  相似文献   

11.
Intact neurofilaments were isolated in parallel from rat peripheral nerve and spinal cord by osmotic shock into hypotonic media containing divalent cation chelators. Isolated neurofilaments were washed and separated by multiple centrifugations in 0.1 M NaCl. Abundant intact neurofilaments were identified in the washed pellets by negative staining techniques. Their origin from neurofilaments was confirmed by immune electron microscopy. Washed neurofilaments were extracted from lipid and membranous components with 8 M urea. Analyses of neurofilament isolates on sodium dodecyl sulfate gels showed that proteins of 200,000, 150,000, and 69,000 mol wt were the major components of intact neurofilaments derived from rat peripheral and central nervous systems. These same proteins were identified in whole tissue homogenates of both sources and became enriched during the isolation of intact neurofilaments. A minor component of 64,000 mol wt arose during isolation. Other proteins were identified as contaminants. Small amounts of proteins with electrophoretic migration of tubulin and actin remain in neurofilament isolates.  相似文献   

12.
Pain inhibition (analgesia) is produced by learned danger signals and inhibited by learned safety signals (antianalgesia). Conditioned analgesia is mediated by brain-to-spinal pathways releasing spinal endogenous opiates. Spinal morphine mimics learned danger signals in producing analgesia, which is inhibited by antianalgesia. The circuitry mediating antianalgesia is unknown. These experiments demonstrate that raphe dorsalis, raphe magnus, and spinal dorsolateral funiculus lesions abolish antianalgesia. Other lesions had no effect on antianalgesia. More important, lesions that blocked development of conditioned analgesia did not block development of antianalgesia. Thus, neural circuitries mediating analgesia and antianalgesia were found to be distinct, and conditioned inhibition of analgesia was found to act by inhibiting the most distal part of the conditioned analgesia circuit, namely, the spinal cord.  相似文献   

13.
We have expanded the original Glucocorticoid Receptor Resource (GRR) database to include several individual resources as part of a larger project called the Nuclear Receptor Resource (NRR). In addition to the GRR, the NRR currently features the Thyroid Hormone Receptor Resource, the Androgen Receptor Resource, the Mineralocorticoid Receptor Resource, the Vitamin D Receptor Resource, and the Steroid Receptor Associated Proteins Resource. The goal of the NRR project is to provide a comprehensive resource for information on the nuclear receptor superfamily, and to provide a forum for the dissemination and discussion of both published and unpublished material on these proteins. Although the individual resources are managed from different servers, all the files are integrated and can be accessed through the project's Home Page, housed at http://nrr. georgetown.edu/nrr.html. In the near future, we hope to expand the project to contain information on other nuclear receptors and to better our electronic publication system. To accomplish this, we encourage the involvement of nuclear receptor investigators in the NRR.  相似文献   

14.
Albino rats, 0, 9, 12, 15, 18, 21 or greater than 90 days of age, were given a mid-thoracic spinal cord transection. Evaluation of responses of the hindlimbs to a variety of behavioral tasks was begun on the day of surgery and at intervals throughout the postoperative survival period (up to 300 days). Two investigators, independently and without knowledge of the animals' ages or survival times, rated the response data. Histological study showed all transections to be complete. Large differences in behavior are observed when animals trasected at the neonatal stage (0-4 days of age) are compared with animals transected at the weanling stage (21-26 days of age)37. Results of the present investigation indicate a critical period near 15 days of age; animals lesioned prior to this age (0, 9, 12 days of age) show response development and recovery similar to the neonatally lesioned animal, whereas those animals lesioned at a later age (18, 21, greater than 90 days of age) show little recovery and are behaviorally similar to the weanling transected animal. In animals lesioned prior to the fifteenth postnatal day, postural responses appear depressed for a brief period but recover rapidly while most responses of animals in the older groups are depressed for longer periods and never attain the degree of recovery characteristic of the neonatally transected animal. Finally, like the neonatally transected animal, rats lesioned on the ninth and twelfth postnatal day develop certain responses at appropriate times relative to normal response development. If, however, these responses are mature and supraspinal control is present at the time of lesioning, they appear to be permanently depressed and fail to recover.  相似文献   

15.
In rat dorsal horn, little is known about the properties of synaptic NMDA receptors during the first two postnatal weeks, a period of intense synaptogenesis. Using transverse spinal cord slices from postnatal day 0-15 rats, we show that 20% of glutamatergic synapses tested at low-stimulation intensity in spinal cord laminae I and II were mediated exclusively by NMDA receptors. Essentially all of the remaining glutamatergic EPSCs studied were attributable to the activation of both NMDA and AMPA receptors. Synaptic NMDA receptors at pure and mixed synapses showed similar sensitivity to membrane potential, independent of age, indicating similar Mg2+ sensitivity. Kinetic properties of NMDA EPSCs from pure and mixed synapses were measured at +50 mV. The 10-90% rise times of the pure NMDA EPSCs were slower (16 vs 10 msec), and the decay tau values were faster (tau1, 24 vs 42 msec; tau2, 267 vs 357 msec) than NMDA EPSCs at mixed synapses. Our results indicate that NMDA receptors are expressed at glutamatergic synapses at a high frequency, either alone or together with AMPA receptors, consistent with the prominent role of NMDA receptors in central sensitization (McMahon et al., 1993).  相似文献   

16.
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5-8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.  相似文献   

17.
In order to examine the relationship between myelination and sensitivity to anoxia in adult white matter, we studied action potential conduction in the spinal cord dorsal column of adult rats in which focal demyelinating lesions had been produced using ethidium bromide/X-irradiation. Acutely isolated spinal cords from control rats and following demyelination were maintained in vitro at 36 degrees C and compound action potentials were studied following supramaximal stimulation. The compound action potential was totally abolished within 12 min of the onset of anoxia in normal dorsal columns, but was not abolished until 50 min following the onset of anoxia in demyelinated dorsal columns. Compound action potentials showed significantly greater recovery (to 58.1 +/- 12.2% of control amplitude) in demyelinated dorsal columns compared to controls (30.8 +/- 5.3%) following 120 min of reoxygenation. These results show that focal demyelination is associated with reduced sensitivity to anoxia within white matter of the adult spinal cord.  相似文献   

18.
Deep dorsal horn neurons (DHNs) involved in nociception can relay long-lasting inputs and generate prolonged afterdischarges believed to enhance the transfer of nociceptive responses to the brain. We addressed the role of neuronal membrane properties in shaping these responses, by recording lamina V DHNs in a slice preparation of the rat cervical spinal cord. Of 256 neurons, 102 produced accelerating discharges in response to depolarizing current pulses, whereas the other neurons showed spike frequency adaptation. Two mechanisms mediated the firing acceleration: a slow inactivation of a K+ current expressed upon activation of the neuron from hyperpolarized holding potentials, and the expression of a regenerative plateau potential activating around resting membrane potential. The increase in firing frequency was much stronger when sustained by the plateau potential (71 DHNs, 28%). A few neurons produced adaptation and both types of acceleration, in different membrane potential domains, showing that the firing pattern of a deep DHN is not a rigid characteristic. Plateau potentials could be elicited by stimulation of nociceptive primary afferent fibres. The bistability associated with plateau potentials permitted afterdischarges. Because plateau potentials had slow activation kinetics and were voltage-dependent, the neurons had non-linear input-output relationships in both the amplitude and time domains. Nociceptive primary afferent stimulation elicited intense and prolonged responses in plateau-generating DHNs, while brief bursts of spikes were evoked otherwise. These results indicate that in a population of deep DHNs, intense firing and prolonged afterdischarges in response to nociceptive stimulation depend on non-linear intrinsic membrane properties.  相似文献   

19.
Immunohistochemical studies have shown there is a dense angiotensin-like immunoreactivity of terminals in the sympathetic region of the thoracic and lumbar spinal cord. In the present study measurements were made of the concentration of angiotensin in the spinal cord of rats using radioimmunoassay following two different extraction procedures. These gave concentrations of angiotensin as mean of 108 and 161 pg.g-1 tissue wet weight. Angiotensin II given intrathecally or microinjected into the spinal cord caused an increase in postganglionic sympathetic nerve activity which was blocked by prior application of saralasin. Angiotensin III was without effect. Intracellular recordings from sympathetic preganglionic neurones in-vitro in slices of neonate rat spinal cord showed that angiotensin II produced an increase of excitability of the neurones by a slow depolarisation without the generation of action potentials. This effect still occurred in the presence of TTX. Angiotensin II also could increase synaptic activity, both EPSPs and IPSPs as well as a synaptically induced slow depolarisation being observed suggesting that presympathetic interneurones are also sensitive to the peptide. The evidence indicates that if angiotensin is released from nerve terminals surrounding sympathetic neurones it will enhance the gain of the neurone so that it could more easily be discharged by other excitatory inputs.  相似文献   

20.
Nerve growth factor (NGF) receptor-like immunoreactivity has been demonstrated in the normal human adult spinal cord using the monoclonal antibody ME20.4. Intense immunoreactivity was associated with fibres and terminals in the substantia gelatinosa. In lamina IX the neuropil demonstrated punctate staining, the motor neurons themselves being negative. At thoracic levels occasional neurons of the intermediolateral column cell group were NGF receptor positive. Fine axonal and punctate terminal reactivity was observed in the gracile fasciculus, corresponding to axons in transverse section. Similar, though slightly less dense immunoreactivity was observed in the cuneate fasciculus. The demonstration of NGF receptor immunoreactivity may provide a useful marker of sensory innervation in the human spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号