首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous films in the system Al2O3–Y2O3 were prepared by the rf sputtering method in the range of 0–76 mol% Y2O3, and their density, refractive index, and elastic constants were measured. All of the physical properties of the amorphous Al2O3–Y2O3 films had a similar compositional dependence; that is, they increased continuously, but not linearly with increasing Y2O3 content. To confirm the coordination states of aluminum and yttrium ions in the amorphous Al2O3–Y2O3 films, the Al K α X-ray emission spectra and the X-ray absorption near edge structures (XANES) were measured. The average coordination number of aluminum ions in the amorphous films containing up to about 40 mol% Y2O3 content was 5, that is a mixture of 4-fold- and 6-fold-coordinated states. In the region of more than about 50 mol% Y2O3, the fraction of the 6-fold-coordinated aluminum ions increased with increasing Y2O3 content, while the results led to the conclusion that the coordination number of yttrium ions was always 6, regardless of composition. These results indicate that, in amorphous films in the system Al2O3–Y2O3, the change of the coordination state of aluminum ions has an important effect on physical properties.  相似文献   

2.
NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposite materials of compositions 5% NiO – 6% Al2O3– 89% SiO2 and 0.2% CoO – 4.8% NiO – 6% Al2O3– 89% SiO2, respectively, were prepared by a sol–gel process. NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals were grown in a SiO2 amorphous matrix at around 1073 K by heating the dried gels from 333 to 1173 K at the rate of 1 K/min. The formations of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in SiO2 amorphous matrix were confirmed through X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimeter, transmission electron microscopy (TEM), and optical absorption spectroscopy techniques. The TEM images revealed the uniform distribution of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in the amorphous SiO2 matrix and the size was found to be ∼5–8 nm.  相似文献   

3.
Amorphous films in the system AlPO4–TiO2 were prepared by an rf-sputtering method, and their physical properties, such as density, refractive index, and thermal expansion coefficient, and the infrared absorption spectra were measured. The thermal expansion coefficient increased linearly with increasing TiO2 content. The results of the molar refractivity and the infrared absorption spectra indicated that the coordination number of titanium ions in these films is higher than that in SiO2–TiO2 glasses with a negative thermal expansion, in which Ti4+ ions are tetrahedrally coordinated. In order to confirm the coordination state of the titanium ions in these amorphous films, titanium K -band emission spectra were obtained by X-ray emission spectroscopy, revealing sixfold coordination. The higher coordination state of Ti4+ was considered to account for these amorphous films not exhibiting negative thermal expansion, as in the SiO2–TiO2 system.  相似文献   

4.
SiO2, Al2O3, and 3Al2O3.2SiO2 powders were synthesized by combustion of SiCl4 or/and AlCl3 using a counterflow diffusion flame. The SiO2 and Al2O3 powders produced under various operation conditions were all amorphous and the particles were in the form of agglomerates of small particles (mostly 20 to 30 nm in diameter). The 3Al2O3.2SiO2 powder produced with a low-temperature flame was also amorphous and had a similar morphology. However, those produced with high-temperature flames had poorly crystallized mullite and spinel structure, and the particles, in addition to agglomerates of small particles (20 to 30 nm in diameter), contained larger, spherical particles 150 to 130 nm in diameter). Laser light scattering and extinction measurements of the particle size and number density distributions in the flame suggested that rapid fusion leading to the formation of the larger, spherical particles occurred in a specific region of the flame.  相似文献   

5.
This paper focused on the effects of various phases of SiO2 additives on the γ-Al2O3-to-α-Al2O3 phase transition. In the differential thermal analysis, the exothermic peak temperature that corresponded to the theta-to-α phase transition was elevated by adding amorphous SiO2, such as fumed silica and silica gel obtained from the hydrolysis of tetraethyl orthosilicate. In contrast, the peak temperature was reduced by adding crystalline SiO2, such as quartz and cristobalite. Amorphous SiO2 was considered to retard the γ-to-α phase transition by preventing γ-Al2O3 particles from coming into contact and suppressing heterogeneous nucleation on the γ-Al2O3 surface. On the other hand, crystalline SiO2 accelerated the α-Al2O3 transition; thus, this SiO2 may be considered to act as heterogeneous nucleation sites. The structural difference among the various SiO2 additives, especially amorphous and crystalline phases, largely influenced the temperature of γ-Al2O3-to-α-Al2O3 phase transition.  相似文献   

6.
Er-doped Al2O3–SiO2 (1/9 in mol ratio of Al2O3/SiO2) thin films were prepared by using a modified sol–gel process. The modified process entails the precipitation and digestion of Er(OH)3, obtained from the reaction between Er ions and NH4OH in solution. Thin films were deposited on Si wafers by using a spin coating technique (3000 rpm) and the coated films were heat treated at different temperatures for 1 h in an oxygen-purged furnace. All the films were structurally characterized by the X-ray diffraction technique using Cu K α radiation. Refractive indices and the morphologies of the films were studied using a spectroscopic phase modulated ellipsometer and atomic force microscopy, respectively. It was observed that the films were crack free and of about 0.4 μm thickness in a single spin coating and both the lifetime and the photoluminescence intensity of Er ions increased with increasing the annealing temperature. The luminescence properties of the Er-doped Al2O3–SiO2 made by a conventional and our modified doping process were compared and discussed from the stand point of peak intensities and lifetimes as a function of annealing temperatures. It is to be noted here that our modified process was found to be more effective in reducing the clustering of Er ions in Al2O3–SiO2 materials as compared to that of the conventional method.  相似文献   

7.
Amorphous films in the SiO2-Y2O3 system were prepared by the rf-sputtering method. Transparent amorphous films were obtained in the region between 0 and 66 mol% Y2O3 content, only in an oxygen atmosphere. The densities and elastic constants of the films were determined. As the amount of Y2O3 addition increased, density and elastic constants increased up to about 45 mol% Y2O3, beyond which it held constant. From the relationship between the bulk modulus and the mean atomic volume, a structural change in the present films seems to occur at about 45 mol% Y2O3 content.  相似文献   

8.
The independent crystallization sequence of an Al2O3 component is modified in the presence of SiO2 and vice versa. Mixed SiO2-Al2O3, gel (28 wt% SiO2 and 72 wt% Al2O3) forms neither cristobalite nor γ-Al2O3 and corundum at 1000°C but forms Si-Al spinel; an amorphous aluminosilicate phase invariably also forms after the gel is heated. However, the composition of this amorphous aluminosilicate phase is not as yet known.  相似文献   

9.
In the system Bi2O3-SiO2-GeO2, good glasses can be formed only from limited compositional regions consisting of 2 narrow strips along the lines x Bi2O3-(100-:t) GeO2 ( x ≤40) and 40Bi2O3 y SiO2 (60- y )GeO2 (mol%); such glass is dark brown. Compositions from a large region (Bi2O3 content <40 mol%) showed immiscibility. In the binary system Bi2O3-GeO2, density and refractive index vary linearly with composition (mol%). Negative deviations of molar volume from ideality suggest that the coordination of a significant number of Ge ions is changing from 4-fold to 6-fold. Thermal expansion and electrical resistivity data are also reported.  相似文献   

10.
The effect of zirconium ions on glass structure and proton conductivity was investigated for sol-gel-derived P2O5–SiO2 glasses. Porous glasses were prepared through hydrolysis of PO(OCH3)3, Zr(OC4H9)4, and Si(OC2H5)4. Chemical bonding of the P5+ ions was characterized using 31P-NMR spectra. The phosphorous ions, occurring as PO(OH)3 in the ZrO2-free glass, were polymerized with one or two bridging oxygen ions per PO4 unit with increased ZrO2 content. The chemical stability of these glasses was increased significantly on the addition of ZrO2, but the conductivity gradually decreased from 26 to 12 mS/cm at room temperature for 10P2O5·7ZrO2·83SiO2 glass. A fuel cell was constructed using 10P2O5·5ZrO2·85SiO2 glass as the electrolyte; a power of ∼4.5 mW/cm2 was attained.  相似文献   

11.
BaTi4O9 thin films were grown on a Pt/Ti/SiO2/Si substrate using rf magnetron sputtering and the structure of the thin films were then investigated. For the films grown at low temperature (≤350°C), an amorphous phase was formed during the deposition, which then changed to the BaTi5O11 phase when the annealing was conducted below 950°C. However, when the annealing temperature was higher than 950°C, a BaTi4O9 phase was formed. On the contrary, for the films grown at high temperature (>450°C), small BaTi4O9 grains were formed during the deposition, which grew during the annealing. The homogeneous BaTi4O9 thin films were successfully grown on Pt/Ti/SiO2/Si substrate when they were deposited at 550°C and subsequently rapid thermal annealed at 900°C for 3 min.  相似文献   

12.
A partial molar volume technique was used to estimate the coordination number of oxygen ions around a boron ion in PbO·2B2O3 and BaO·2B2O3 melts. The boron coordination number appeared to be lower in the melt than in the crystal of PbO·2B2O3, whereas it was nearly the same in the melt and crystal of BaO·2B2O3.  相似文献   

13.
Amorphous lithium electrolyte thin films, xLi2O·ySiO2·zP2O5, were deposited by rf magnetron sputtering of pure and mixed-phase lithium silicate, lithium phosphate, SiO2, Li2O, and Li2CO3 targets, and their compositions were determined using proton-induced y -ray emission spectroscopy, energy-dispersive X-ray analysis, Rutherford backscattering spectrometry, and atomic-emission spectroscopy. The deposition conditions were chosen to assure thermalization of the sputtered flux, which proved to be necessary in order to obtain a homogeneous distribution of Si and P in the films. Optical absorption and ac impedance measurements showed that glass-in-glass phase separation occurred in a large SiO2-rich domain of the composition diagram. In contrast to bulk glasses, all of the Li2O–SiO2 films were phase-separated, including those with lithia contents larger than lithium disilicate. High-performance liquid chromatography measurements revealed that, analogous to bulk glasses, the addition of SiO2 to Li2O-P2O5 compositions reduced the number of phosphate anion dimers, trimers, and higher anion polymers in the films through the formation of -Si-O-P-bonds. However, in contrast to bulk glasses, the distribution of phosphate anion polymers followed closely the Flory distribution, with the fraction of anion polymers decreasing monotonically with increasing chain length.  相似文献   

14.
Solid-state compatibility and melting relations of MgAl2O4 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching selected samples located in the 65 wt% MgAl2O4, plane followed by microstructural and energy dispersive X-ray analysis. A projection of the liquidus surface of the primary crystallization volume of MgAl2O4 was constructed from CaO, SiO2 and exceeding Al2O3, not involved in stoichiometric MgAl2O4 formation; those three amounts were recalculated to 100 wt%. The temperature and character of six invariant points, where four solids co-exist with a liquid phase, were defined. One maximum point was localized and the positions of the isotherms were tentatively established. The effect of CaO, SiO2, and Al2O3 impurities on the high temperature behavior of spinel materials was also discussed.  相似文献   

15.
The densities of binary aluminosilicate melts were measured X-radiographically as a function of Al2O3, concentration between 1800° and 2000°C. Within this temperature range, the density curves vary linearly and are parallel from fused SiO2 to ≊30 to 45 mol% Al2O3, depending on the temperature. At higher Al2O3 contents, negative deviation from linearity increases with increasing temperature. Recent supplementary research efforts on various aspects of the system SiO2-Al2O3 indicate that the changing coordination and structural role of the aluminum ion may be a primary factor in determining the shapes of the density curves.  相似文献   

16.
The effect of B2O3–SiO2 liquid-phase additives on the sintering, microstructure, and microwave dielectric properties of LiNb0.63Ti0.4625O3 ceramics was investigated. It was found that the sintering temperature could be lowered easily, and the densification and dielectric properties of LiNb0.63Ti0.4625O3 ceramics could be greatly improved by adding a small amount of B2O3–SiO2 solution additives. No secondary phase was observed for the ceramics with B2O3–SiO2 additives. With the addition of 0.10 wt% B2O3–SiO2, the ceramics sintered at 900°C showed favorable microwave dielectric properties with ɛr=71.7, Q × f =4950 GHz, and τf=−2.1 ppm/°C. The energy dispersive spectra analysis showed an excellent co-firing interfacial behavior between the LiNb0.63Ti0.4625O3 ceramic and the Ag electrode. It indicated that LiNb0.63Ti0.4625O3 ceramics with B2O3–SiO2 solution additives have a number of potential applications on passive integrated devices based on the low-temperature co-fired ceramics technology.  相似文献   

17.
Crystallization of the poorly durable Na2MoO4 phase able to incorporate radioactive cesium must be avoided in SiO2–Al2O3–B2O3–Na2O–CaO glasses developed for the immobilization of Mo-rich nuclear wastes. Increasing amounts of B2O3 and MoO3 were added to a SiO2–Na2O–CaO glass, and crystallization tendency was studied. Na2MoO4 crystallization tendency decreased with the increase of B2O3 concentration whereas the tendency of CaMoO4 to crystallize increased due to preferential charge compensation of BO4 entities by Na+ ions. 29Si MAS NMR showed that molybdenum acts as a reticulating agent in glass structure. Trivalent actinides surrogate (Nd3+) were shown to enter into CaMoO4 crystals formed in glasses.  相似文献   

18.
The stability of the vitreous state in the lithium metasilicate region of the system Li2O–Al2O3–SiO2 was found to be a function of the concentration of lithia. The higher the lithia content, the less stable was the glass. The devitrification of glasses in this system was studied. In addition to the phases present at or near the liquidus, it was found that the β -eucryptite– β -quartz solid solution phase was metastable over most of the region. The Li2O–SiO2, β -Li2O–Al2O3–4SiO2 solid solution, β -Li2O–Al2O3–2SiO2 solid solution triple point was estimated to be near 62.5% SiO2, 17% Al2O3, and 20.5% Li2O (by weight). The thermal expansions of bodies in this region were measured and the values obtained are explained in terms of the phases present.  相似文献   

19.
Subsolidus phase relations were established in the system Si3N4-SiO2-Y2O3. Four ternary compounds were confirmed, with compositions of Y4Si2O7N2, Y2Si3O3N4, YSiO2N, and Y10(SiO4)6N2. The eutectic in the triangle Si3N4-Y2Si2O7-Y10(SiO4)6N2 melts at 1500°C and that in the triangle Si2N2O-SiO2-Y2Si2O7 at 1550°C. The eutectic temperature of the Si3N4-Y2Si2O7 join was ∼ 1520°C.  相似文献   

20.
Dense mullite ceramics were successfully produced at temperatures below 1300°C from amorphous SiO2-coated gamma-Al2O3 particle nanocomposites (AS-gammaA). This method reduces processing temperatures by similar/congruent300°C or more with respect to amorphous SiO2-coated alpha-Al2O3 particle microcomposites (AS-alphaA) and to other Al2O3-SiO2 reaction couples. The good densification behavior and the relatively low mullite formation temperature make AS-gammaA nanocomposites an excellent matrix raw material for polycrystalline aluminosilicate fiber-reinforced mullite composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号