首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用分步法合成了两嵌段共聚物聚甲基丙烯酸甲酯-b-聚甲基丙烯酸-2-羟乙酯.首先以AIBN为引发剂,FeCl<,3>/PPh<,为>催化体系,通过甲基丙烯酸甲酯(MMA)的反向原子转移自由基聚合,得到端基含Cl的聚合物PMMA-Cl,其分子量分布为1.36;然后以此为大分子引发剂,FeCl<,2>/PPh<,3>为催化...  相似文献   

2.
黄林  杨艳琼  余峰  付甲  陈忠仁 《材料导报》2017,31(4):100-104
主要研究了对称性的聚苯乙烯-聚甲基丙烯酸甲酯嵌段共聚物(PS-b-PMMA,简称SM)对聚甲基丙烯酸甲酯/聚甲基丙烯酸环己酯(PMMA/PCHMA)熔融共混体系的增容。采用透射电子显微镜(TEM)表征了SM和PMMA分子量对共混体系微观相形态和胶束迁移行为的影响。研究表明,SM分别在PMMA与PCHMA均聚物中形成不同结构的胶束,当SM在PMMA/PCHMA界面上形成"湿刷"时,SM在PCHMA相中形成的胶束才能迁移到PMMA相中。SM的加入改善了PMMA与PCHMA之间的相容性,但其增容效果取决于SM的分子量。随着分散相PMMA分子量从19kg/mol增加到39kg/mol,PMMA粒子的平均粒径逐渐增加。  相似文献   

3.
郭莉  景欢旺 《化工新型材料》2012,40(4):115-118,137
采用可逆加成断裂链转移自由基聚合方法,成功地制备了两亲嵌段共聚物聚甲基丙烯酸甲酯-b-聚丙烯酸-co-聚异丙基丙烯酰胺(PMMA-b-(PAA-co-PNIPAM)。利用傅立叶红外光谱、核磁共振和透射电镜研究了共聚物的结构特征;用GPC测定了其分子量和分子量分布。透射电镜、激光粒度分析仪和动态光散射结果表明嵌段共聚物在水溶液中能够自组装形成直径为200nm的胶束颗粒。通过紫外-可见分光光度计和差示扫描量热法测得了不同pH值下嵌段共聚物的低临界溶解温度(LCST)。经过接枝后的嵌段共聚物的LCST比PNIPAM要高,且随着pH值的降低,聚合物的LCST随之降低。聚合物的LCST可以通过AA链段与NIPAM链段的比例、温度、pH值来控制。  相似文献   

4.
采用熔融共混方式,利用两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)来增容聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系,主要研究PS-b-PMMA嵌段比、均聚物的分子量以及体系粘度对增容效果的影响。研究发现,非对称结构的嵌段共聚物较对称结构的嵌段共聚物更容易在体相形成胶束,胶束的形成减少了嵌段共聚物在界面的利用率。均聚物分子量增大,嵌段共聚物的胶束均增加。分散相分子量增大,造成了界面的嵌段共聚物稳定性减弱,容易扩散至分散相内部,形成胶束。连续相分子量增大致使链段溶胀力减小,嵌段共聚物胶束外围的乳化效果降低,而且连续相粘度增大,使得嵌段共聚物胶束滞留在连续相,难以迁移至界面。共混体系的混合剪切增加,粘度变小,嵌段共聚物的扩散速率加快。通过调控均聚物分子量和体系粘度,能有效地减少体相胶束的形成,增大嵌段共聚物在界面的利用率。通过Leibler干湿刷理论、焓驱溶胀聚合物刷以及Stokes-Einstein扩散理论可以解释相关的结论。  相似文献   

5.
通过开环聚合(ROP)和原子转移自由基聚合(ATRP)制备了不同嵌段结构的嵌段共聚物PCL-b-PMMA,使用核磁共振(1H-NMR)和凝胶渗透色谱(GPC)对其结构进行了表征,通过原子力显微镜(AFM)研究了嵌段共聚物薄膜的微相分离形貌。结果表明,嵌段共聚物发生了微相分离,聚ε-己内酯(PCL)链段形成柱状微区;PCL链段体积分数较低时,薄膜表面以聚甲基丙烯酸甲酯(PMMA)链段聚集为主,但未在PCL柱状微区上方形成覆盖,从而在薄膜表面形成孔洞;随PCL链段体积分数增加及PMMA链段分子量下降,PCL柱状微区面积增加,向薄膜表面迁移并逐渐形成覆盖,造成薄膜表面孔洞消失。  相似文献   

6.
在超声辐射作用下,以α-溴代丙酸乙酯为引发剂,溴化亚铜/2,2-联吡啶为催化体系,通过原子转移自由基聚合(A-TRP)制备了分子链末端含有一个α-溴原子的聚甲基丙烯酸甲酯(PMMA-Br)。以此为大分子引发剂引发苯乙烯单体进行ATRP反应,制得聚甲基丙烯酸甲酯嵌段聚苯乙烯(PMMA-b-PS)共聚物。通过硼氢化钠还原聚合物体系中的溴化亚铜,从而得到纳米铜/PMMA-b-PS复合粒子。红外光谱(FT-IR)和核磁共振(1H-NMR)表征嵌段共聚物的结构;凝胶渗透色谱(GPC)测定了共聚物的相对分子量和多分散系数;X射线光电子能谱(XPS)证明纳米铜和PMMA-b-PS嵌段共聚物中PMMA之间存在一定的相互作用;通过高分辨透射电子显微镜(HTEM)观察到纳米铜具有诱导聚合物组装的现象。  相似文献   

7.
The low penetration depth and high sputter rates obtained using polyatomic primary ions have facilitated their use for the molecular depth profiling of some spin-cast polymer films by secondary ion mass spectrometry (SIMS). In this study, dual-beam time-of-flight (TOF) SIMS (sputter ion, 5 keV SF(5)(+); analysis ion, 10 keV Ar(+)) was used to depth profile spin-cast multilayers of poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), and trifluoroacetic anhydride-derivatized poly(2-hydroxyethyl methacrylate) (TFAA-PHEMA) on silicon substrates. Characteristic positive and negative secondary ions were monitored as a function of depth using SF(5)(+) primary ion doses necessary to sputter through the polymer layer and uncover the silicon substrate (>5 x10(14) ions/cm(2)). The sputter rates of the polymers in the multilayers were typically less than for corresponding single-layer films, and the order of the polymers in the multilayer affected the sputter rates of the polymers. Multilayer samples with PHEMA as the outermost layer resulted in lowered sputter rates for the underlying polymer layer due to increased ion-induced damage accumulation rates in PHEMA. Additionally, the presence of a PMMA or PHEMA overlayer significantly decreased the sputter rate of TFAA-PHEMA underlayers due to ion-induced damage accumulation in the overlayer. Typical interface widths between adjacent polymer layers were 10-15 nm for bilayer films and increased with depth to approximately 35 nm for the trilayer films. The increase in interface width and observations using optical microscopy showed the formation of sputter-induced surface roughness during the depth profiles of the trilayer polymer films. This study shows that polyatomic primary ions can be used for the molecular depth profiling of some multilayer polymer films and presents new opportunities for the analysis of thin organic films using TOF-SIMS.  相似文献   

8.
The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (ΔG0), standard enthalpy (ΔH0) and standard entropy (ΔS0) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293–323 K.  相似文献   

9.
We present measurements of thermal and optical properties of poly(methyl methacrylate) (PMMA), PMMA modified by the addition of ethanol (MPMMA), and copolymers of methyl methacrylate with 2-hydroxyethyl methacrylate [P(HEMA:MMA)]. Spectral transmission of the polymers is excellent (alpha = 0.5 cm(-1) at 400 nm, decreasing to 0.04 cm(-1) at 633 nm). Measured laser damage thresholds of MPMMA and P(HEMA:MMA) show at least a twofold increase over PMMA. Thermal lensing measured in these hosts doped with Rhodamine 6G is shown to be similar (f = -450 mm for pump power of 200 mW in a 2-mm-diameter spot, scaling with pump intensity). Compared with MPMMA, P(HEMA:MMA) offers an improved surface quality and a more uniform dye distribution.  相似文献   

10.
A novel method to synthesize single-wall carbon nanotube (SWNT)/poly(methyl methacrylate) (PMMA) nanocomposite by in-situ polymerization in supercritical CO2 is presented. The surfaces of the SWNT bundles were first functionalized with amino ethyl methacrylate (AEMA) followed by co-polymerization with methyl methacrylate. Supercritical fluid enhanced the diffusivity of monomer and facilitated the growth of tethered PMMA chains near the entanglement area and the interstitial space of the SWNT bundles. Partial debundling and disentanglement of the SWNT bundles and an enhanced dispersion in the polymer matrix were observed under SEM and TEM. After the removal of the polymer matrix physically attached to the nanotubes, it is found that the nanotubes were covered by tethered PMMA chains, which were a few nanometers in thickness. This work creates a route for improving impregnation and dispersion in SWNT composites; the same process can be extended to other vinyl polymers.  相似文献   

11.
采用熔融共混方式,利用非对称两嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸甲酯(PS-b-PMMA)对聚甲基丙烯酸环己酯(PCHMA)/聚甲基丙烯酸甲酯(PMMA)共混体系进行增容。重点研究了嵌段比、共混方式以及分散相PMMA分子量对共混体系中非对称嵌段共聚物分布的影响,即嵌段共聚物稳定相界面与所形成胶束数量、位置之间的竞争关系。结果表明,在低分子量PMMA情况下共混方式对非对称嵌段共聚物的分布影响显著,改变共混方式可以有效减少分散相中的胶束数量,使嵌段共聚物主要分布在二元不相容增容体系两相界面。另一方面,增大PMMA分子量会改变非对称嵌段共聚物在两相界面的界面曲率,导致其在分散相中的溶解性增大,在界面上的稳定性减小,从而迁移至分散相内部并最终形成胶束。  相似文献   

12.
Herein an approach to controlling the pore size of mesoporous carbon thin films from metal‐free polyacrylonitrile‐containing block copolymers is described. A high‐molecular‐weight poly(acrylonitrile‐block‐methyl methacrylate) (PAN‐b‐PMMA) is synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self‐assembly behavior of PAN‐b‐PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as‐spin‐coated PAN‐b‐PMMA is microphase‐separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN‐b‐PMMA into mesoporous carbon thin films, the pore size and center‐to‐center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions.  相似文献   

13.
Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution.  相似文献   

14.
The compatibility of binary blends of natural rubber (NR) and poly(methyl methacrylate) (PMMA) has been analysed from the viscosity behaviour. For this, the equations developed by both Krighbaum and Wall, and their modified forms by Williamson and Wright, were used. The interaction between polymers in solution has been interpreted qualitatively based on the heat of mixing (ΔH) and interaction parameter (X1). Viscometry and spectroscopy studies and calculation of the heat of mixing and the interaction parameter indicated the heterogeneous nature of NR/PMMA blends. The effects of graft copolymer of natural rubber and poly(methyl methacrylate) (NR-g-PMMA) as an emulsifying agent on the interfacial properties of NR/PMMA blends were studied based on the phase separation behaviour. The demixing behaviour is found to be a function of graft copolymer concentration, mode of mixing, nature of solvent and molecular weight of homopolymers and graft copolymers. The demixing behaviour has been studied by noting the phase separation time and volume of the phase separated region. The addition of graft copolymer decreases the demixing behaviour of the blends. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
The infection risk of biomaterial implants is determined by an interplay of bacterial adhesion and surface growth of the adhering organisms. In this study, we compared initial adhesion and surface growth of Pseudomonas aeruginosa AK1 (zeta potential –7 mV) on negatively charged (PMMA/MAA, zeta potential –18 mV) and positively charged (PMMA/TMAEMA-Cl, zeta-potential +12 mV) methacrylate copolymers in situ in a parallel plate flow chamber. Initial adhesion was measured using phosphate-buffered saline and subsequent surface growth of the adhering bacteria using nutrient broth as growth medium. Initial adhesion was twice as fast on the positively charged methacrylate than on the negatively charged copolymer. Surface growth, however, was absent on the positively charged copolymer, while on the negatively charged methacrylate the number of bacteria increased exponentially during surface growth with a generation time of 32 min. From the results of this study it can be concluded that positively charged biomaterial surfaces might show reduced risks of biomaterials-centred infections, despite being more adhesive.  相似文献   

16.
通过乳液共聚合分别合成了两种具有互补结构的共聚物乳液:聚(甲基丙烯酸甲酯-丙烯酸丁酯-甲基丙烯酸聚P(MMA-BA-MMA)和聚(甲基丙烯酸甲酯-丙烯酸丁酯-乙烯基吡咯烷酮)P(MMA-BA-VP)。通过^1H-NMR测定,研究了共聚物组成与单体投料组成的关系;通过FR-IR、DSC、表 及力学性能测试,研究了P(MMA-BA-MMA)/P(MMA-BA-VP)共聚物复合体系氢键相互作用及其对聚合物性能的影响,结果表明P(MMA-BA-MMA)/P(MMA-BA-VP)共聚物复合体系存在氢键相互作用,氢键相互作用导致复合体系表面降低、拉伸强度提高。  相似文献   

17.
The structural properties of microfiber meshes made from poly(2-hydroxyethyl methacrylate) (PHEMA) were found to significantly depend on the chemical composition and subsequent cross-linking and nebulization processes. PHEMA microfibres showed promise as scaffolds for chondrocyte seeding and proliferation. Moreover, the peak liposome adhesion to PHEMA microfiber scaffolds observed in our study resulted in the development of a simple drug anchoring system. Attached foetal bovine serum-loaded liposomes significantly improved both chondrocyte adhesion and proliferation. In conclusion, fibrous scaffolds from PHEMA are promising materials for tissue engineering and, in combination with liposomes, can serve as a simple drug delivery tool.  相似文献   

18.
Journal of Materials Science: Materials in Electronics - Multi-layer graphene nanoplatelet (mGNP)/poly(methyl methacrylate) (PMMA) nanocomposite flexible thin films were prepared at various GNP...  相似文献   

19.
This research attempts to utilize polymer degradability in modifying electrical properties of poly(l-lactide) (PLLA)/poly(methyl methacrylate) (PMMA)/carbon fillers composites. Three kinds of carbon particles, i.e. carbon black, vapor-grown carbon fiber, and carbon nanotube, were compounded with PLLA/PMMA blend, followed by hydrolytic degradation of the composites, resulted in degradation of PLLA molecular chain from the surface of samples, with PMMA and carbon particles remained undegraded. By controlling degradation rate, it was possible to prepare samples with low surface resistivity, yet at the same time exhibited high value of volume resistivity. It was also found that final electrical properties of degraded composites depend on the size and the shape of the fillers.  相似文献   

20.
Bi H  Zhong W  Meng S  Kong J  Yang P  Liu B 《Analytical chemistry》2006,78(10):3399-3405
A biomimetic surface has been formed on the poly(methyl methacrylate) (PMMA) microfluidic chips for biofouling resistance on the basis of a simple modification. Accordingly, an amphiphilic phospholipid copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (PMB) was developed to introduce the phosphorylcholine functional groups onto the PMMA surface via the anchoring of hydrophobic n-butyl methacrylate units. The 2-methacryloyloxyethyl phosphorylcholine segments could form hydrophilic domains, considered to be located on the surface, to provide a biocompatible surface. X-ray photoelectron spectroscopy and Fourier transform infrared spectra confirmed the success of surface functionalization. The PMB-modified microchips containing phosphorylcholine moieties exhibited more stable electroosmotic mobility compared with the untreated one. In addition to being characterized for minimized nonspecific adhesion of serum proteins and plasma platelets, the PMB-functionalized microchannels have been exemplified by electrophoresis of proteins. This one-step procedure offers an effective approach for a biomimetic surface design on microfluidic chips, which is promising in high-throughput and complex biological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号