共查询到20条相似文献,搜索用时 0 毫秒
1.
Jarrah Muath Ibrahim Jaya A. S. M. Alqattan Zakaria N. Azam Mohd Asyadi Abdullah Rosni Jarrah Hazim Abu-Khadrah Ahmed Ismail 《The Journal of supercomputing》2020,76(12):9330-9354
The Journal of Supercomputing - Over the past few decades, there has been a surge of interest of using swarm intelligence (SI) in computer-aided optimization. SI algorithms have demonstrated their... 相似文献
2.
3.
The artificial bee colony is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problem, and later, it was extended to constrained design problems as well. This paper describes a self-adaptive constrained artificial bee colony algorithm for constrained optimization problem based on feasible rule method and multiobjective optimization method. The employed bee colony severs as the global search engine for each population based on feasible rule. Then, the onlooker bee colony can explore the new search space based on the multiobjective optimization. In order to enhance the convergence rate of the proposed algorithm, a self-adaptive modification rate is proposed to make the algorithm can change many parameters. To verify the performance of our approach, 24 well-known constrained problems from 2006 IEEE congress on Evolution Computation (CEC2006) are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, state-of-the-art approaches in terms of the quality of the resulting solutions from literature. 相似文献
4.
Neural Computing and Applications - The aim of the study was to propose a new metaheuristic algorithm that combines parts of the well-known artificial bee colony (ABC) optimization with elements... 相似文献
5.
A hybrid simplex artificial bee colony algorithm (HSABCA) which combines Nelder–Mead simplex method with artificial bee colony algorithm (ABCA) is proposed for inverse analysis problems. The proposed algorithm is applied to parameter identification of concrete dam-foundation systems. To verify the performance of HSABCA, it is compared with the basic ABCA and a real coded genetic algorithm (RCGA) on two examples: a gravity dam and an arc dam. Results show that the proposed algorithm is an efficient tool for inverse analysis and it performs much better than ABCA and RCGA on such problems. 相似文献
6.
Artificial bee colony (ABC) algorithm has already shown more effective than other population-based algorithms. However, ABC is good at exploration but poor at exploitation, which results in an issue on convergence performance in some cases. To improve the convergence performance of ABC, an efficient and robust artificial bee colony (ERABC) algorithm is proposed. In ERABC, a combinatorial solution search equation is introduced to accelerate the search process. And in order to avoid being trapped in local minima, chaotic search technique is employed on scout bee phase. Meanwhile, to reach a kind of sustainable evolutionary ability, reverse selection based on roulette wheel is applied to keep the population diversity. In addition, to enhance the global convergence, chaotic initialization is used to produce initial population. Finally, experimental results tested on 23 benchmark functions show that ERABC has a very good performance when compared with two ABC-based algorithms. 相似文献
7.
Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions 总被引:3,自引:0,他引:3
A Rosenbrock artificial bee colony algorithm (RABC) that combines Rosenbrock’s rotational direction method with an artificial bee colony algorithm (ABC) is proposed for accurate numerical optimization. There are two alternative phases of RABC: the exploration phase realized by ABC and the exploitation phase completed by the rotational direction method. The proposed algorithm was tested on a comprehensive set of complex benchmark problems, encompassing a wide range of dimensionality, and it was also compared with several algorithms. Numerical results show that the new algorithm is promising in terms of convergence speed, success rate, and accuracy. The proposed RABC is also capable of keeping up with the direction changes in the problems. 相似文献
8.
Hsing-Chih Tsai 《Neural computing & applications》2014,25(3-4):635-651
This work integrates artificial bee colony (ABC) and bees algorithm (BA) to develop a two bees (TB) algorithm. Agents of TB are stochastically assigned to ABC and BA sub-swarms in each iteration according to their fitness values. Consequently, the current healthier sub-swarm gains more agents to carry out its actions. Sub-swarm populations therefore vary ceaselessly during iterations, while either the ABC or BA sub-swarms may be superior to the other. Experiments are conducted on 23 benchmark functions. Results demonstrate that the TB performs better than or close to the ABC or BA winner. TB overcomes the poor performance of ABC and BA in handling particular problems. 相似文献
9.
Pattern Analysis and Applications - Saliency detection is one of the challenging problems still tackled by image processing and computer vision research communities. Although not very numerous,... 相似文献
10.
Artificial bee colony algorithm (ABC), which is inspired by the foraging behavior of honey bee swarm, is a biological-inspired optimization. It shows more effective than genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). However, ABC is good at exploration but poor at exploitation, and its convergence speed is also an issue in some cases. For these insufficiencies, we propose an improved ABC algorithm called I-ABC. In I-ABC, the best-so-far solution, inertia weight and acceleration coefficients are introduced to modify the search process. Inertia weight and acceleration coefficients are defined as functions of the fitness. In addition, to further balance search processes, the modification forms of the employed bees and the onlooker ones are different in the second acceleration coefficient. Experiments show that, for most functions, the I-ABC has a faster convergence speed and better performances than each of ABC and the gbest-guided ABC (GABC). But I-ABC could not still substantially achieve the best solution for all optimization problems. In a few cases, it could not find better results than ABC or GABC. In order to inherit the bright sides of ABC, GABC and I-ABC, a high-efficiency hybrid ABC algorithm, which is called PS-ABC, is proposed. PS-ABC owns the abilities of prediction and selection. Results show that PS-ABC has a faster convergence speed like I-ABC and better search ability than other relevant methods for almost all functions. 相似文献
11.
Jiang Qiaoyong Cui Jianan Ma Yueqi Wang Lei Lin Yanyan Li Xiaoyu Feng Tongtong Wu Yali 《Applied Intelligence》2022,52(7):7271-7319
Applied Intelligence - Recently, the artificial bee colony (ABC) algorithm has become increasingly popular in the field of evolutionary computing and manystate- of-the-art ABC variants (ABCs) have... 相似文献
12.
A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding 总被引:1,自引:0,他引:1
Bahriye Akay 《Applied Soft Computing》2013,13(6):3066-3091
Segmentation is a critical task in image processing. Bi-level segmentation involves dividing the whole image into partitions based on a threshold value, whereas multilevel segmentation involves multiple threshold values. A successful segmentation assigns proper threshold values to optimise a criterion such as entropy or between-class variance. High computational cost and inefficiency of an exhaustive search for the optimal thresholds leads to the use of global search heuristics to set the optimal thresholds. An emerging area in global heuristics is swarm-intelligence, which models the collective behaviour of the organisms. In this paper, two successful swarm-intelligence-based global optimisation algorithms, particle swarm optimisation (PSO) and artificial bee colony (ABC), have been employed to find the optimal multilevel thresholds. Kapur's entropy, one of the maximum entropy techniques, and between-class variance have been investigated as fitness functions. Experiments have been performed on test images using various numbers of thresholds. The results were assessed using statistical tools and suggest that Otsu's technique, PSO and ABC show equal performance when the number of thresholds is two, while the ABC algorithm performs better than PSO and Otsu's technique when the number of thresholds is greater than two. Experiments based on Kapur's entropy indicate that the ABC algorithm can be efficiently used in multilevel thresholding. Moreover, segmentation methods are required to have a minimum running time in addition to high performance. Therefore, the CPU times of ABC and PSO have been investigated to check their validity in real-time. The CPU time results show that the algorithms are scalable and that the running times of the algorithms seem to grow at a linear rate as the problem size increases. 相似文献
13.
Improved artificial bee colony algorithm for global optimization 总被引:7,自引:0,他引:7
The artificial bee colony algorithm is a relatively new optimization technique. This paper presents an improved artificial bee colony (IABC) algorithm for global optimization. Inspired by differential evolution (DE) and introducing a parameter M, we propose two improved solution search equations, namely “ABC/best/1” and “ABC/rand/1”. Then, in order to take advantage of them and avoid the shortages of them, we use a selective probability p to control the frequency of introducing “ABC/rand/1” and “ABC/best/1” and get a new search mechanism. In addition, to enhance the global convergence speed, when producing the initial population, both the chaotic systems and the opposition-based learning method are employed. Experiments are conducted on a suite of unimodal/multimodal benchmark functions. The results demonstrate the good performance of the IABC algorithm in solving complex numerical optimization problems when compared with thirteen recent algorithms. 相似文献
14.
Crossover-based artificial bee colony algorithm for constrained optimization problems 总被引:1,自引:0,他引:1
Ivona Brajevic 《Neural computing & applications》2015,26(7):1587-1601
15.
In this paper, we put forward a hybrid approach based on the life cycle for the artificial bee colony algorithm to generate dynamical varying population as well as ensure appropriate balance between exploration and exploitation. The bee life-cycle model is firstly constructed, which means that each individual can reproduce or die dynamically throughout the searching process and population size can dynamically vary during execution. With the comprehensive learning, the bees incorporate the information of global best solution into the search equation for exploration, while the Powell’s search enables the bees deeply to exploit around the promising area. Finally, we instantiate a hybrid artificial bee colony (HABC) optimizer based on the proposed model, namely HABC. Comprehensive test experiments based on the well-known CEC 2014 benchmarks have been carried out to compare the performance of HABC against other bio-mimetic algorithms. Our numerical results prove the effectiveness of the proposed hybridization scheme and demonstrate the performance superiority of the proposed algorithm. 相似文献
16.
Evolutionary computation (EC) paradigm has undergone extensions in the recent years diverging from the natural process of genetic evolution to the simulation of natural life processes exhibited by the living organisms. Bee colonies exemplify a high level of intrinsic interdependence and co-ordination among its members, and algorithms inspired from the bee colonies have gained recent prominence in the field of swarm based metaheuristics. The artificial bee colony (ABC) algorithm was recently developed, by simulating the minimalistic foraging model of honeybees in search of food sources, for solving real-parameter, non-convex, and non-smooth optimization problems. The single parameter perturbation in classical ABC resulted in fairly commendable performance for simple problems without epistasis of variables (separable). However, it suffered from narrow search zone and slow convergence which eventually led to poor exploitation tendency. Even with the increase in dimensionality, a significant deterioration was observed in the ability of ABC to locate the optimum in a huge search volume. Some of the probable shortcomings in the basic ABC approach, as observed, are the single parameter perturbation instead of a multiple one, ignoring the fitness to reward ratio while selecting food sites, and most importantly the absence of environmental factors in the algorithm design. Research has shown that spatial environmental factors play a crucial role in insect locomotion and foragers seem to learn the direction to be undertaken based on the relative analysis of its proximal surroundings. Most importantly, the mapping of the forager locomotion from three dimensional search spaces to a multidimensional solution space calls forth the implementation of multiple modification schemes. Based on the fundamental observation pertaining to the dynamics of ABC, this article proposes an improved variant of ABC aimed at improving the optimizing ability of the algorithm over an extended set of problems. The hybridization of the proposed fitness learning mechanism with a weighted selection scheme and proximity based stimuli helps to achieve a fine blending of explorative and exploitative behaviour by enhancing both local and global searching ability of the algorithm. This enhances the ability of the swarm agents to detect optimal regions in the unexplored fitness basins. With respect to its immediate surroundings, a proximity based component is added to the normal positional modification of the onlookers and is enacted through an improved probability selection scheme that takes the T/E (total reward to distance) ratio metric into account. The biologically-motivated, hybridized variant of ABC achieves a statistically superior performance on majority of the tested benchmark instances, as compared to some of the most prominent state-of-the-art algorithms, as is demonstrated through a detailed experimental evaluation and verified statistically. 相似文献
17.
Alrezaamiri Hamidreza Ebrahimnejad Ali Motameni Homayun 《Requirements Engineering》2020,25(3):363-380
Requirements Engineering - In incremental software development approaches, the product is developed in various releases. In each release, a set of requirements is proposed for the development.... 相似文献
18.
Ning Jiaxu Zhang Bin Liu Tingting Zhang Changsheng 《Neural computing & applications》2018,30(9):2661-2671
Neural Computing and Applications - Research on multi-objective optimization (MO) has become one of the hot points of intelligent computation. In this paper, an archive-based multi-objective... 相似文献
19.
Artificial bee colony (ABC) algorithm is a stochastic and population-based optimization method, which mimics the collaborative foraging behaviour of honey bees and has shown great potential to handle various kinds of optimization problems. However, ABC often suffers from slow convergence speed since its internal mechanism and solution search equation do well in exploration, but badly in exploitation. In order to solve this knotty issue, inspired by the natural phenomenon that the good individuals (solutions) always contain good genes (variables) and the effective combination of the superior genes from different good individuals could more easily produce better offspring, we introduce a novel gene recombination operator (GRO) into ABC to accelerate convergence. To be specific, in GRO, a part of good solutions in the current population are selected to produce candidate solutions by the gene combination. Especially, each good solution recombines with only one other good solution to generate only one candidate solution. In addition, GRO will be launched at the end of each generation. In order to validate its efficiency and effectiveness, GRO is embedded into nine versions of ABC, i.e., the original ABC, GABC, best-so-far ABC(BSFABC), MABC, CABC, ABCVSS, qABC, dABC and distABC, while yields GRABC, GRGABC, GRBSFABC, GRMABC, GRCABC, GRABCVSS, GRqABC, GRdABC and GRdistABC respectively. The experimental results on 22 benchmark functions demonstrate that GRO could enhance the exploitation ability of ABCs and accelerate convergence without loss of diversity. 相似文献
20.
To minimize the makespan in permutation flowshop scheduling problems, a hybrid discrete artificial bee colony (HDABC) algorithm is presented. In the HDABC, each solution to the problem is called a food source and represented by a discrete job permutation. First, the initial population with certain quality and diversity is generated from Greedy Randomized Adaptive Search Procedure (GRASP) based on Nawaz–Enscore–Ham (NEH) heuristics. Second, the discrete operators and algorithm, such as insert, swap, path relinking and GRASP are applied to generate new solution for the employed bees, onlookers and scouts. Moreover, local search is applied to the best one. The presented algorithm is tested on scheduling problem benchmarks. Experimental results show its efficiency. 相似文献