首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高移动边缘计算任务卸载方案的性能,提出一种移动边缘计算中利用BPSO的任务卸载策略.构建三层移动边缘计算(M EC)网络架构,移动设备根据任务情况进行本地计算,或者将其卸载至边缘计算节点与云服务器;根据M EC网络中的计算模型、通信模型设计计算卸载目标,即任务最优分配、节点负载均衡,使计算任务得到及时、有序、高效的分配;利用二进制粒子群(BPSO)算法对优化目标进行求解,得到最优卸载策略,实现能量消耗最小且时延最短,系统整体负载最为均衡.实验结果表明,所提策略能量损耗最小且系统整体负载性能明显提升.  相似文献   

2.
The Journal of Supercomputing - Mobile edge computing (MEC) is an emerging paradigm that decreases the computational burden of mobiles by task offloading. MEC is regarded as an effective method to...  相似文献   

3.
Qu  Yuben  Dai  Haipeng  Wang  Lihao  Wang  Weijun  Wu  Fan  Tan  Haisheng  Tang  Shaojie  Dong  Chao 《World Wide Web》2022,25(5):2185-2213
World Wide Web - In this paper, we first study the problem of Correlation-aware Task computation offloading (CoTask) in mobile edge computing. Specifically, considering the correlation among...  相似文献   

4.
Li  Chunlin  Cai  Qianqian  Zhang  Chaokun  Ma  Bingbin  Luo  Youlong 《The Journal of supercomputing》2021,77(12):13933-13962
The Journal of Supercomputing - The intensive mobile data traffic poses a great challenge for energy-constrained mobile devices. In the mobile edge environment, effective computing offloading and...  相似文献   

5.
Chen  Che  Guo  Rongzong  Zhang  Wenjie  Yang  Jingmin  Yeo  Chai Kiat 《The Journal of supercomputing》2022,78(1):1093-1116
The Journal of Supercomputing - In this paper, we investigate a MEC relay-assisted system with multiple relay nodes (RNs) and multiple remote servers (RSs), where both the selections of best RN and...  相似文献   

6.

We propose a new approach for the organic integration of edge cloud offloading decision and Stackelberg game pricing to address the problem that the current Stackelberg games all allocate edge cloud computing resources equally and ignore the difference of different users’ demand for computing resources. Firstly, the Stackelberg game theory is used to establish a model of the optimal amount of data to be offloaded by users and the optimal number of computing resource blocks to be purchased, which converts the multivariate offloading decision problem of users into a univariate optimization problem, simplifies the offloading decision problem of users, and proves the existence of Nash equilibrium. Secondly, the KKT condition is applied to realize the offloading decision of users to purchase the optimal computing resource blocks. The upper and lower bounds of edge cloud pricing are established. Finally, a dynamic programming-based offloading (DPPO) algorithm for edge cloud pricing is proposed to achieve the optimal pricing of edge cloud utility and maximize each user’s own utility. The simulation results show that the proposed method not only achieves the equilibrium of edge cloud utility and user utility, but also has good convergence and scalability. The DPPO algorithm yields better results than with different pricing and offloading strategies.

  相似文献   

7.
为在具有不稳定网络拓扑结构的车载边缘环境下实现车载任务的顺利卸载,提出一种基于动态优先级的最早完成时间卸载策略.根据车辆的速度、位置以及周围资源的使用状态等多种实时的信息筛选出可用卸载资源,以任务自身属性与可用资源的实际匹配程度作为基础为任务选择合适的卸载策略,实现任务流的完成时间最小化.实验结果表明,与其它策略相比,提出策略可以有效降低任务流的完成时间.  相似文献   

8.
移动边缘计算(MEC)使智能终端能够将部分计算负载转移到位于基站子系统的边缘服务器上,以解决物联网络大量数据处理问题。通过研究非正交多址(NOMA)的多址MEC,提出了一种终端-边缘服务器资源分配方案,通过NOMA方式传输,智能终端可以将计算工作负载卸载到不同的边缘服务器,从而减少完成智能终端的计算工作负载的总延迟。该方案目标是优化资源成本最小,该系统成本考虑终端卸载的计算工作量和边缘服务器的计算资源使用成本的总延迟。通过单个终端的最优卸载解决方案数值结果验证了方案的有效性。  相似文献   

9.
Dai  Fei  Liu  Guozhi  Mo  Qi  Xu  WeiHeng  Huang  Bi 《World Wide Web》2022,25(5):1999-2017
World Wide Web - Vehicular edge computing (VEC) is emerging as a novel computing paradigm to meet low latency demands for computation-intensive vehicular applications. However, most existing...  相似文献   

10.
Li  Ming  Zhang  Jianshan  Lin  Bing  Chen  Xing 《The Journal of supercomputing》2022,78(13):15123-15153
The Journal of Supercomputing - Mobile Edge Computing (MEC) provides a new opportunity to reduce the latency of IoT applications significantly. It does so by offloading computation-intensive tasks...  相似文献   

11.
Kang  Yan  Yang  Xuekun  Pu  Bin  Wang  Xiaokang  Wang  Haining  Xu  Yulong  Wang  Puming 《World Wide Web》2022,25(5):2265-2295

Edge computing is a popular computing modality that works by placing computing resources as close as possible to the sensor data to relieve the burden of network bandwidth and data centers in cloud computing. However, as the volume of data and the scale of tasks processed by edge terminals continue to increase, the problem of how to optimize task selection based on execution time with limited computing resources becomes a pressing one. To this end, a hybrid whale optimization algorithm (HWOA) is proposed for multi-objective edge computing task selection. In addition to the execution time of the task, economic profits are also considered to optimize task selection. Specifically, a fuzzy function is designed to address the uncertainty of task’s economic profits and execution time. Five interactive constraints among tasks are presented and formulated to improve the performance of task selection. Furthermore, some improved strategies are designed to solve the problem that the whale optimization algorithm (WOA) is subject to local optima entrapment. Finally, an extensive experimental assessment of synthetic datasets is implemented to evaluate the multi-objective optimization performance. Compared with the traditional WOA, the diversity metric (Δ-spread), the hypervolume (HV) and other evaluation metrics are significantly improved. The experiment results also indicate the proposed approach achieves remarkable performance compared with other competitive methods.

  相似文献   

12.
Guo  Feiyan  Tang  Bing  Tang  Mingdong 《World Wide Web》2022,25(5):2019-2047
World Wide Web - With the development of software technology, some complex mobile and Internet-of-Things (IoT) applications can be constituted by a set of microservices. At present, mobile edge...  相似文献   

13.
为避免移动边缘计算中任务的重复计算,进一步提升系统性能,缩减应用程序完成时间,提出基于主动缓存的云边端协同卸载策略(CEECO).在边缘服务器和云端主动缓存计算任务的执行结果,在此基础上基于线性回归模型进行任务预测,得到不同的云边端卸载执行策略.仿真结果表明,该算法相对传统卸载策略总完成时间更少,能够满足不同任务情况下...  相似文献   

14.
In order to accommodate the high demand for performance in smartphones, mobile cloud computing techniques, which aim to enhance a smartphone’s performance through utilizing powerful cloud servers, were suggested. Among such techniques, execution offloading, which migrates a thread between a mobile device and a server, is often employed. In such execution offloading techniques, it is typical to dynamically decide what code part is to be offloaded through decision making algorithms. In order to achieve optimal offloading performance, however, the gain and cost of offloading must be predicted accurately for such algorithms. Previous works did not try hard to do this because it is usually expensive to make an accurate prediction. Thus in this paper, we introduce novel techniques to automatically generate accurate and efficient method-wise performance predictors for mobile applications and empirically show they enhance the performance of offloading.  相似文献   

15.
针对现有边缘计算计算卸载算法存在的延迟较大且负载不均衡的问题,提出一种移动边缘计算中基于改进遗传算法的计算卸载与资源分配算法.基于提出的移动边缘计算网络构建系统模型,其中包括能耗、平均服务延迟、执行时间以及负载均衡模型.以能耗、延迟、负载均衡最小化为优化目标,利用改进的遗传算法进行求解,其中采用染色体一维表现形式、交叉和变异算子提高算法的性能.利用iFogSim和Google集群对所提算法进行模拟仿真实验,结果表明,算法种群数量和最大迭代次数的合理值分别是60和25,所提算法得到的计算卸载和资源分配策略在能耗、负载均衡、延迟和网络使用率方面的表现均优于其它算法.  相似文献   

16.
Jin  Xiaomin  Gao  Feng  Wang  Zhongmin  Chen  Yanping 《The Journal of supercomputing》2022,78(6):7888-7907
The Journal of Supercomputing - In the evolution of Internet of Things and 5G networks, edge computing, as an emerging computing paradigm, can effectively reduce the latency of accessing the cloud...  相似文献   

17.

In recent years, Fog Computing (FC) is known as a good infrastructure for the Internet of Things (IoT). Using this architecture for the mobile applications in the IoT is named the Mobile Fog Computing (MFC). If we assume that an application includes some modules, thus, these modules can be sent to the Fog or Cloud layer because of the resource limitation or increased runtime at the mobile. This increases the efficiency of the whole system. As data is entered sequentially, and the input is given to the modules, the number of executable modules increases. So, this research is conducted to find the best place in order to run the modules that can be on the mobile, Fog, or Cloud. According to the proposed method, when the modules arrive at gateway, then, a Hidden Markov model Auto-scaling Offloading (HMAO) finds the best destination to execute the module to create a compromise between the energy consumption and execution time of the modules. The evaluation results obtained regarding the parameters of the energy consumption, execution cost, delay, and network resource usage shows that the proposed method on average is better than the local execution, First-Fit (FF), and Q-learning based method.

  相似文献   

18.
Multimedia Tools and Applications - Biological threats are becoming a serious security issue for many countries across the world. Effective biosurveillance systems can primarily support appropriate...  相似文献   

19.
The Journal of Supercomputing - To augment the capabilities of mobile devices, application partitioning solutions in mobile cloud computing have emerged to decide the execution location of each...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号