首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
焊后热处理对Fe-Cr-C耐磨堆焊合金组织和磨损性能的影响   总被引:2,自引:0,他引:2  
性只能达到焊态的16%~32%.热处理后碳化物和基体的匹配关系发生恶化是造成耐磨性降低的主要原因.  相似文献   

2.
采用含Fe-C-Mo-V的气体保护药芯焊丝堆焊制备磨损试样,并对其进行不同冲击能量下的动载冲击磨粒磨损试验. 通过扫描电子显微镜配合能谱分析、磨损失重测试和激光扫描共聚焦显微镜观察等测试方法,对熔敷金属的显微组织及磨痕特征进行分析及表征,研究了熔敷金属在不同冲击能量下的磨粒磨损行为. 结果表明,熔敷金属的显微组织主要由奥氏体基体、层片状共晶组织及团块状的VC硬质相构成. 熔敷金属的磨损失重、磨痕粗糙度以及磨痕深度均随冲击能量的增加而逐渐减小. 磨损机制为磨粒对奥氏体基体的微观切削以及塑性变形. 随着冲击能量的增加,熔敷金属产生加工硬化,磨痕亚表面出现形变马氏体组织,且VC硬质相与层片状共晶组织相互作用,共同提高堆焊层的硬度,从而提高基体的耐磨性,增强抗冲击性能.  相似文献   

3.
Fe-Cr-C耐磨堆焊合金中初生碳化物生长方向的控制   总被引:9,自引:8,他引:9       下载免费PDF全文
王智慧  王清宝 《焊接学报》2004,25(1):103-106,110
用两种方法对Fe-Cr-C系耐磨堆焊合金中初生碳化物的生长方向进行了研究。探讨了含碳量(质量分数,%)分别为3.34、4.11、5.16和6.5的耐磨堆焊合金碳含量及铬一碳比对初生碳化物的生长方向的影响,并采用控制冷却条件的方法对堆焊层微观组织中碳化物定向生长进行了研究。得出了冷却条件对初生碳化物生长方向的影响规律。试验结果表明,碳含量及冷却条件对耐磨堆焊层的金相组织起决定性的作用,提高含碳量或降低铬一碳比会使Fe-Cr-C系耐磨堆焊合金中初生碳化物趋向垂直于耐磨堆焊层表面生长,并且初生碳化物的密度显著提高。冷却条件和散热方向可以有效地控制初生碳化物的生长方向,采用基板背面水冷却的方法可以使初生碳化物趋向垂直于耐磨堆焊层表面生长。当改变冷却条件降低冷却速度时,初生碳化物会随机地沿任何方向生长。  相似文献   

4.
钒对Fe-Cr-C耐磨堆焊层性能的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
在Fe-Cr-C耐磨堆焊合金中加入钒,研究钒对Fe-Cr-C耐磨堆焊合金焊态和焊后热处理态性能的影响.采用埋弧堆焊方法在Q235低碳钢基体上制备了堆焊层,利用光学金相、SEM分析了堆焊合金的显微组织,并进行了硬度和磨料磨损试验.结果表明,焊后加热对Fe-Cr-C耐磨堆焊合金的硬度有较大影响.经过焊后加热,基体组织的硬度降低值都大于22%,降低值最大的是不含钒的Fe-Cr-C耐磨堆焊合金,达到37.7%.焊后加热对初生碳化物M7C3的硬度影响较小,其硬度降低值为1.4%~11.3%.含0.4%V可以有效的提高Fe-Cr-C耐磨堆焊合金高温热处理后的耐磨料磨损性能.以淬火态的45钢为标样,在经过900℃焊后热处理,含0.4%V的Fe-Cr-C耐磨堆焊合金相对耐磨性为1.9,而同样条件下不含钒的试样相对耐磨性只有1.3,两者相比,含0.4%V的合金相对耐磨性提高了46%.  相似文献   

5.
铌含量对Fe-Cr-C熔敷金属组织与性能的影响   总被引:1,自引:2,他引:1  
采用埋弧自动焊的方法制备出不同铌含量的Fe-Cr-Nb-C堆焊层,研究了铌含量对堆焊层微观组织结构和性能的影响,焊接过程中铌和碳发生反应生成NbC,随着铌含量的增加NbC数量增多,尺寸有所增大,堆焊层硬度和耐磨性能先增加后降低.当铌含量增加到一定程度时堆焊层中硬质相M7C3的数量减少,基体含碳量降低,组织软化.试验结果表明,铬含量在15 %左右、碳含量在4 %左右的情况下,铌含量为5 %左右最为合适,Fe-Cr-Nb-C堆焊层表现出优良的综合性能.  相似文献   

6.
为提高农机刃具类零件的抗磨粒磨损性能,提出一种钎焊金刚石耐磨涂层制备方法,在Q235钢基体上制备了不同粒径及镀覆状态的金刚石耐磨涂层,并与65Mn钢的摩擦磨损和抗磨粒磨损性能进行对比。采用扫描电镜(SEM)对涂层表面、涂层与钢基体界面、涂层磨损后的表面微观形貌进行表征,并分析涂层的磨损规律及机理。结果表明:钎焊金刚石涂层与钢基体结合良好,金刚石在涂层中均匀分布,涂层厚度约370 μm。钎焊金刚石涂层的耐磨性优于65Mn钢的,且随着金刚石粒径减小钎焊金刚石涂层的摩擦系数降低,涂层的耐磨性增大;钎焊镀钨金刚石涂层的抗摩擦磨损和磨粒磨损性能均高于钎焊未镀覆金刚石涂层的。   相似文献   

7.
Fe-Cr-C耐磨堆焊合金磨粒磨损行为   总被引:4,自引:2,他引:4       下载免费PDF全文
采用埋弧堆焊方法,在Q235钢表面制备Fe-Cr-C耐磨合金,在MLS—225型湿式橡胶轮磨粒磨损试验机上进行磨粒磨损试验,通过对磨损试样表面的扫描电子显微镜观察分析并结合能谱成分分析研究磨损形成机制.结果表明,Fe-Cr-C耐磨堆焊合金在试验的湿石英砂磨料磨损条件下,磨损机制以微裂纹引起的剥落去除机制为主,也存在一定数量的犁沟或犁皱造成的微切削去除机制.剥落的发生与碳化物密切相关,能谱成分分析表明剥落坑内Cr元素含量对应在(Cr,Fe)7C3铬含量范围内,说明剥落坑是碳化物断裂造成的.  相似文献   

8.
研究了H13模具钢的常规马氏体(油淬火+580℃回火)和无碳化物贝氏体(300℃等温处理)的相变行为,以及显微组织对其冲击磨损性能的影响。结果表明:试验钢经贝氏体等温后形成了由板条状贝氏体铁素体和残留奥氏体组成的无碳化物贝氏体组织;贝氏体铁素体+残留奥氏体组织的冲击磨损性能在磨损后期(1.5和2.0 h)优于马氏体组织。这是由于马氏体组织容易产生微裂纹,产生大量犁削,从而导致耐磨性能降低,而无碳化物贝氏体组织在冲击磨损过程中使表层发生剧烈的塑性变形,诱导微观组织中的残留奥氏体转变成α相铁素体,能够阻止试验钢基体在冲击磨损过程中产生切削,从而提高其耐磨性。  相似文献   

9.
Cr/C比及热处理工艺对高铬铸铁抗磨粒磨损性能的影响   总被引:4,自引:1,他引:4  
在实验室条件下,研究了Cr/C比及热处理工艺对高铬铸铁抗冲击磨粒磨损性能的影响.结果表明,在相对较低冲击载荷下,热处理态Cr28(Cr/C比为9.5)抗磨性比Cr15(Cr/C比为5.6)更好;相对中等冲击载荷下铸态Cr28白口铁比其热处理态的更耐磨.并从金相组织上分析了其原因,探讨了其磨损机制.  相似文献   

10.
选用三种不同碳,铬含量的耐磨钢,通过热处理获得不同数量的二次碳化物和马氏体基体、研究了二次碳化物对基体三体磨粒磨损特性的影响。试验结果表明,当切削磨损机理占主导地位时,二次碳化物对基体磨粒磨损能力提高有利;当低周塑变疲劳磨损占主恃位时,二次碳化物对基体抗  相似文献   

11.
Fe-Cr-C系高碳高铬耐磨堆焊合金微观组织分析   总被引:6,自引:0,他引:6       下载免费PDF全文
研究了C元素含量6.0%左右时改变Cr元素含量和Cr元素含量40%左右时改变C元素含量两种情况下Cr及C元素各自对Fe-Cr-C合金堆焊层组织的影响.结果表明,C和Cr元素增加时,初生碳化物的量增加.初生碳化物随着C元素和Cr元素的增加,形态越来越规则,分布越来越密集,初生碳化物颗粒的单个尺寸增大.C元素含量6.0%左右,Cr元素含量增大时,初生碳化物微区Cr元素含量增加;而当Cr元素含量40%左右,C元素含量增加时,初生碳化物微区Cr元素含量反而降低.  相似文献   

12.
本文论述了不同碳含量碳素钢的组织形态与抗冲击磨粒磨损性能的关系。试验结果表明,钢的正火态抗冲击磨粒磨损性能在含碳量为0.8%时具有最佳值。淬火态的抗冲击磨粒磨损性能与马氏体形态有很大关系。在钢的含碳量为0.45%时,板条状与片状马氏体的混合组织具有最佳的耐磨性。  相似文献   

13.
多组元铁合金耐磨材料主要应用于热轧辊,其磨损失效主要形式为高温钢坯与轧辊的相对运动造成.制备了4种不同成分的多组元铁合金,成分分别为0、1%、3%、5%的Mo,2.6%C、1%Si、5%Mn、7%V以及8%Cr,其余为Fe.使用HT1000高温摩擦磨损试验机在500℃条件下对该合金进行了磨损试验,采用XRD和SEM/E...  相似文献   

14.
杨庆祥  赵斌  员霄  蹤雪梅  周野飞 《表面技术》2015,44(4):42-47,53
目的研制一种新型添加纳米Y2O3的过共晶Fe-Cr-C堆焊合金,改善堆焊合金粗大的初生M7C3碳化物,提高堆焊合金的耐磨性。方法采用明弧堆焊的方法制作堆焊合金,用金相电子显微镜对其表面微观组织进行观察,用洛氏硬度计对其表面硬度进行测量,用砂带摩擦磨损试验机对其表面耐磨性进行评价,用扫描电子显微镜对其磨损形貌进行观察。最后,利用错配度理论对M7C3的细化机理进行分析。结果过共晶Fe-Cr-C堆焊合金由初生M7C3和共晶组织(共晶M7C3、奥氏体及部分马氏体)组成。未添加Y2O3的堆焊合金初生M7C3比较粗大,其平均尺寸在22μm,硬度为55HRC,磨损量为0.85mg/mm2。经纳米Y2O3改性之后,堆焊合金的初生M7C3尺寸变小,其平均尺寸为16μm,硬度为57HRC,磨损量减少为0.59 mg/mm2,Y2O3的(001)面与正交M7C3的(100)面之间的二维错配度为8.59%。结论 Y2O3可以成为M7C3的非均质形核核心,从而细化了过共晶Fe-Cr-C堆焊合金的初生M7C3碳化物,提高了过共晶Fe-Cr-C堆焊合金表面耐磨性。  相似文献   

15.
《铸造技术》2016,(7):1315-1318
采用铸造法制备了钼含量为10wt%的高钼高速钢,利用SEM、XRD、EDS分析了显微组织,并利用ML-100型销盘式磨损试验机测试了磨粒磨损性能。结果表明:高钼高速钢中的碳化物为M_2C型碳化物,经过热处理后,其基体组织为马氏体和奥氏体。磨粒尺寸与载荷对高钼高速钢的磨损性能有显著影响,随着磨粒尺寸或载荷增大,磨损量显著增加。磨损失效形式为磨粒对高速钢的显微切削。当磨粒尺寸及载荷较小时,M_2C型碳化物能有效地发挥作用而抵抗磨粒的显微切削,反之,当磨粒尺寸及载荷较大时,磨粒经过碳化物时会对其耕犁而掀起碳化物,碳化物不能有效的保护基体,导致磨损较为严重。  相似文献   

16.
NbC增强Fe-Cr-C耐磨堆焊合金组织与磨粒磨损性能   总被引:1,自引:1,他引:1       下载免费PDF全文
以H08A为焊芯,在Fe-Cr-C耐磨合金焊条药皮中加入NbC,对堆焊层组织及NbC对堆焊层硬度和耐磨性的影响进行了研究.结果表明,NbC增强Fe-Cr-C耐磨合金的宏观硬度和耐磨性都高于Fe-Cr-C合金,宏观硬度达到61.6 HRC,比Fe-Cr-C耐磨合金提高9.6%;相对耐磨性提高60%.NbC增强Fe-Cr-C耐磨合金中NbC硬质相断面呈不规则形状,分布于M7C3之间,或镶嵌在M7C3中,以菱形或多边形居多,NbC分布不均匀,有局部聚集的区域.与Fe-Cr-C耐磨合金的共晶碳化物比较,Fe-Cr-C-NbC合金的共晶碳化物要粗大,共晶碳化物的间距也较大.  相似文献   

17.
含内生碳化物颗粒的堆焊合金组织与磨料磨损性能   总被引:1,自引:0,他引:1       下载免费PDF全文
文中通过焊条电弧焊在Q235钢板上堆焊获得一种新的含内生碳化物颗粒的堆焊合金,采用光谱仪、硬度计、光学显微镜、SEM和EDAX能谱分析对合金的化学成分、组织和硬度进行了研究,在销盘型磨损试验机上进行了磨料磨损试验.结果表明,研制成功的堆焊合金组织为混合型马氏体和少量残余奥氏体+弥散分布的一次(NbCrTi)C颗粒,且低碳马氏体和高碳马氏体数量相当,内生复合碳化物(NbCrTi)C增强相在基体中弥散分布,局部有偏聚;强韧结合的基体能联结和支撑增强相,硬度达57HRC,耐磨性达到碳化钨焊条D707的3.6倍.  相似文献   

18.
选用三种不同碳、铬含量的耐磨钢,通过热处理获得不同数量的二次碳化物和马氏体基体。研究了二次碳化物对基体三体磨粒磨损特性的影响.试验结果表明;当切削磨损机理占主导地位时,二次碳化物对基体抗磨粒磨损能力提高有利;当低周塑变疲劳磨损占主导地位时,二次碳化物对基体抗磨粒磨损能力提高不利。  相似文献   

19.
对3Cr13不锈钢进行气体渗碳和高温脱碳处理,探究了M_7C_3型碳化物与M_(23)C_6型碳化物之间的转变关系,揭示了C在碳化物转变过程中起到的作用。结果表明:经过渗碳处理后不锈钢的组织中都出现了碳化物,碳化物的数量随着渗碳时间的延长而增加,而脱碳之后碳化物的数量明显减少。进行EDS分析后发现,不锈钢中存在一个特别的区域,在该区域两侧出现了碳含量差异很大,而铬含量几乎相同的碳化物。进行XRD剥离试验后发现,这个区域其实是M_7C_3与M_(23)C_6碳化物转变区,且脱碳之后该区域到渗碳表层的距离变小,说明在固态扩散条件下M_7C_3与M_(23)C_6碳化物之间的转变主要受碳含量的控制。  相似文献   

20.
热处理对新型Fe-Cr-Mn-Co合金堆焊层磨粒磨损性能的影响   总被引:1,自引:0,他引:1  
臧伟  徐桂芳  吴浩  雷玉成 《热加工工艺》2014,(20):164-166,169
采用钨极氩弧焊(TIG)将新型Fe-Cr-Mn-Co合金堆焊在304不锈钢基体表面,对比研究热处理对堆焊合金磨粒磨损性能的影响。采用金相观察、硬度测量、失重分析和扫描电镜(SEM)对不同工艺热处理的堆焊合金金相组织、硬度、磨损性能及磨损机理进行了分析。研究结果表明:Fe-Cr-Mn-Co堆焊合金微观组织均为奥氏体,重熔和固溶处理能使晶粒细化、组织均匀,前者效果更佳;重熔后的堆焊合金硬度最高、耐磨性最好,但与固溶处理的相差不大,304不锈钢最差;合金的失效为凿削式磨粒磨损和塑性变形产生的疲劳破坏混合模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号