首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid crystal polymer (LCP) was blended polethylene terephthalate (PET) in different concetrations to improve the barrier properties of PET in injection stretch blow molded bottles. The improvement depends on the microstructure developed at various stages of the process.In this work, the emphasis is on the injection molding stage of the preform. The characteristics and number of morphological layers were directly related to the amount and type of LCP in the blend and the loction within the perform. It was found that at 10% LCP, three morphological layers were found across the thickness of the part, while at 30% LCP, five morphological layers could be identified. The LCP structure can be classified into four types: droplets, thick rods, thin fibrils and ribbons. Each morphological layer is made up of one or more types of structures. The evolution of on type structure to another depends on the particular flow regime ongoing at various locations in the mold. This microstructure development, during the flow, was examined in detail.  相似文献   

2.
Through-thickness distribution of liquid crystalline polymer (LCP) of blends containing polyphenylene sulfide (PPS) and LCP was investigated using differential scanning calorimetry and scanning electron microscopy. The effect of the LCP distribution on the mechanical test was checked through bending testing of the various compositions of the injection molded samples. These studies showed a nonuniform distribution of LCP in the PPS-rich region where the LCP content in the skin layer was higher than in the core layer or boundary between the two layers. The LCP component was uniformly distributed in the LCP-rich region. The increase of bending modulus with increasing LCP content was attributed to the reinforcing nature of the LCP fibrils in the skin layer. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Copolyesters of poly(ethylene terephthalate) (PET) with a liquid crystalline polymer (LCP), SBH 1:1:2, have been synthesized by the polycondensation, carried out in the melt at temperatures up to 300°C of sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the presence of PET. The PET-SBH copolyesters have been characterized by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, etc., and the relationships between properties and preparation conditions are discussed. The copolyesters show a biphasic nature, which is more evident for the products synthesized with a thermal profile comprising relatively lower temperatures (220–230°C) in the initial stages of the polycondensation. Another procedure, whereby the addition of PET to the monomer charge was made at a later stage of the reaction, has also been devised to prepare copolyesters with enhanced blockiness. The compatibilizing effect of the PET-SBH copolymers toward PET/SBH blends has been investigated. PET/SBH blends (75/25, w/w) have been prepared in a Brabender mixer at 270°C and 30 rpm, with and without the addition of appropriate amounts (2.5, 5, and 10%, w/w) of 50-50 PET-SBH copolyesters. Different blending techniques have been used according to whether the three components were fed into the mixer at the same time, or one of them was added at a later stage. The effect of the type and the amount of added copolyester has been studied through morphological, thermal, and mechanical characterizations. The results show that the addition of small amounts ∼5 wt% of copolyesters leads to improved dispersion and adhesion of the minor SBH phase. Moreover, while the tensile modulus of the blends is practically unaffected by the addition of the copolymer, a substantial increase of both tensile strength and elongation to break is found for a concentration of added copolyester of ∼5wt%. Slightly better results were apparently obtained by the use of a block copolyester.  相似文献   

4.
The “in-situ” compatibilization for a PET/LCP blend via transesterification reactions in a twin-screw extruder having a very short residence time is investigated through thermal, rheological, and mechanical studies. Inclusion of a small amount of liquid crystalline polymer (LCP) enhanced the crystallization rate of the poly(ethylene terephthalate) (PET) matrix. It acted as a nucleating agent. LCP lowered the blend viscosity above Tcn (crystalline-nematic transition temperature), working as a processing aid. However, the addition of dibutyltindilaurate (DBTDL) as a reaction catalyst was found to increase the viscosity of the blends, diminish the size of the dispersed phase, enhance its adhesion with the matrix, and lead to an increase of mechanical properties of two immiscible phases. Hence DBTDL is helpful in producing a reactive compatibilizer by reactive extrusion at the interface of this polyester blend system. The optimum catalyst amount turned out to be about 500 ppm when the reaction proceeds in 90/10 PET/LCP polyester blend systems. Its effect on the mechanical properties is discussed in detail. The structural change of reactive blend was identified by H1 NMR and wide angle X-ray diffraction patterns.  相似文献   

5.
The liquid crystalline polymer (LCP) and polyethylene terephthalate (PET) were blended in an elastic melt extruder to make samples having 20, 40, 60, 80, and 100 wt % of LCP. Morphology of these samples was studied using scanning electron microscopy. The steady state shear viscosity (η), dynamic complex viscosity (η*) and first normal stress difference (N1) were evaluated and compared at two temperatures: 265°C, at which LCP was in solid state, and 285°C, at which LCP was in molten state. The PET was in molten state at both the temperatures. The shear viscosity of the studied blends displayed its dependence on composition and shear rate. A maxima was observed in viscosity versus composition plot corresponding to 80/20 LCP/PET blend. The N1 increased with LCP loading in PET and with the increased asymmetry of LCP droplets. The N1 also varied with the shear stress in two stages; the first stage demonstrated elastic deformation, whereas second stage displayed dominant plastic deformation of LCP droplets. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2212–2218, 2007  相似文献   

6.
This article reveals that the already known improved properties of the thermoplastic–liquid crystalline polymer (LCP) blends can be further improved substantially over the corresponding noncompatibilized counterparts by using a reactive in situ type compatibilizer, the styrene–glycidyl methacrylate (SG) copolymer. This SG copolymer has been demonstrated in this article to be an effective reactive compatibilizer to improve the processability, heat deflection temperature, and mechanical properties of Noryl/LCP blends. The epoxy functional groups of the SG copolymer can react with the end groups of PPO (in Noryl) and LCP. The in situ-formed SG–g–LCP copolymer tends to reside along the interface of Noryl–LCP and reduces the interfacial tension during melt processing. The resultant LCP fibers in the Noryl matrix of the compatibilized blends have a higher aspect ratio because the fibers become finer, longer, and tend to form lamellate domains with a greater interphase contact area than those from the noncompatibilized blends. The compatibilized blends also improve the interphase adhesion between Noryl and LCP. The presence of ethyl triphenylphosphonium bromide catalyst promotes the grafting reaction to improve blend compatibilization. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
This article relates the fibrillation of liquid crystalline polymer (LCP) under shear in its blend with a thermoplastic polymer (TP) to the relative rate of energy utilization in the LCP and TP phases. The development of a criterion based on the energy relationship for predicting LCP fibrillation in the blend is discussed. The formation of LCP fibers in the blends of LCP with polycarbonate (PC), polyethylene naphthalate (PEN), high‐density polyethylene (HDPE), polypropylene (PP), and silica‐filled polypropylene (PP) was studied to validate the criterion and to demonstrate its applicability. For all the blends, viscosity data were obtained by using a capillary rheometer, which was subsequently used to estimate the rate of energy utilization in the LCP and the matrix phases. The predictions based on the proposed criterion were verified through the morphological investigations carried out on the extrudates obtained from the same capillary experiments. The energy‐based criterion was easy to implement, could account for the effect of variable LCP concentration and fillers in the blend, and could provide reliable predictions for a variety of LCP/TP blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3314–3324, 2003  相似文献   

8.
Styrene–acrylonitrile–glycidyl methacrylate (SAG) copolymers with various contents of glycidyl methacrylate (GMA) were used to compatibilize the incompatible blends of styrene–acrylonitrile (SAN) and a liquid crystalline polymer (LCP). These SAG copolymers contain reactive glycidyl groups that are able to react with the carboxylic acid and/or hydroxyl end groups of the LCP to form the SAG‐g‐LCP copolymers during melt processing. The in situ–formed graft copolymers tend to reside along the interface to reduce the interfacial tension and to increase the interface adhesion. The morphologies of the SAN/LCP blends were examined by using scanning electron microscopy (SEM), where the compatibilized SAN/LCP blends were observed with greater numbers and finer fibrils than those of the corresponding uncompatibilized blends. The mechanical properties of the blends increased after compatibilization. The presence of a small amount (200 ppm) of ethyl triphenylphosphonium bromide (ETPB) catalyst further promotes the graft reaction and improves the compatibilization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3321–3332, 2001  相似文献   

9.
A new approach for enhancing the compatibility of liquid crystalline polymers (LCPs) with engineering thermoplastics is developed in this paper. By adding a new type of compatibilizer to poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)/LCP blends (semi‐interpenetrating LCP network (ILCPN) comprising the liquid crystalline polymer poly‐(ethylene terephthalate)/p‐hydroxybenzoic acid (PET/60PHB) and crosslinked polystyrene), a well‐compatibilized PPO/LCP composite with considerably improved mechanical properties was obtained. Compared with the uncompatibilized PPO/LCP blend, the bending strength and the Izod impact strength of the compatibilized sample with 5% semi‐ILCPN increase more than 2 and 4 times, respectively.  相似文献   

10.
The aim of this work was the synthesis of new graft copolymers consisting of polypropylene (PP) backbones and liquid crystalline polymer (LCP) branches, to be used as compatibilizing agents for PP/LCP blends. The PP-g-LCP copolymers have been prepared by polycondensation of the monomers of a semiflexible liquid crystalline polyester (SBH 1 : 1 : 2), that is, sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the mole ratio of 1 : 1 : 2, carried out in the presence of appropriate amounts of a commercial acrylic-acid-functionalized polypropylene (PPAA). The polycondensation products, referred to as COPP50 and COPP70, having a calculated PPAA concentration of 50 and 70 wt %, respectively, have been fractionated with boiling toluene and xylene, and the soluble and insoluble fractions have been characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, and X-ray diffraction. All analytical characterizations have concordantly shown that the products are formed by intricate mixtures of unreacted PPAA and SBH together with PP-g-SBH copolymers of different composition. Exploratory experiments carried out by adding small amounts of COPP50 or COPP70 into binary mixtures of isotactic polypropylene (iPP) and SBH while blending have demonstrated that this practice leads to an appreciable improvement of the dispersion of the minor LCP phase, as well as to an increase of the crystallization rate of iPP. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 391–403, 1998  相似文献   

11.
In situ compatibilization of immiscible blends of PEN and thermotropic LCP was achieved by the ultrasonically‐aided extrusion process. Ultrasonically‐treated PEN underwent degradation, leading to a decrease of its viscosity. Viscosity of LCP was unaffected by ultrasonic treatment. Because of reduced viscosity ratio of PEN to LCP at high amplitude of ultrasonic treatment, larger LCP domains were observed in molding of the blends. LCP acted as a nucleating agent, promoting higher crystallinity in PEN/LCP blends. Ultrasonically‐induced copolymer formation was detected by MALDI‐TOF mass spectrometry in the blends. Ultrasonic treatment of 90/10 PEN/LCP blends improved interfacial adhesion in fibers spun at intermediate draw down ratios (DDR), improving their ductility. The lack of improvement in the mechanical properties of fibers spun at high DDR after ultrasonic treatment was attributed to the disturbance of interfacial copolymer by high elongation stresses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

12.
通过在 PET和热致性液晶高聚物 (TL CP)共混体系中加入扩链剂双 (2 - 唑啉 ) (BOZ)进行反应性共混纺丝 ,并对初生纤维的结构与性能进行了表征。发现由于扩链剂的作用 ,在 PET与 LCP之间的扩链反应生成部分具有嵌段结构的共聚酯 ,改善了体系的相容性和界面粘结性能 ,提高初生纤维的强度 ,但初生纤维的取向度降低 ,模量和伸长也降低。初生纤维的结晶性能几乎不发生变化  相似文献   

13.
Photo-oxidative degradation of blends of poly(ethylene terephthalate) (PET) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was studied considering the mutual influence of both components. The photo-oxidation of these systems was investigated in the temperature range 30–100°C to study the effects of segmental motion of polymer chains. For short time of UV-illumination at 365 nm the process is diffusion controlled and can be explained with the help of Waite's theory. The segmental interactions of polymer segments in the blends also affect the diffusion coefficients and the activation energy values. Higher values of the activation energy of PET in the blends cause a decrease of chain breaking.  相似文献   

14.
王彩红  周秉正  何敏  鲁圣军 《聚氯乙烯》2011,39(12):16-18,24
采用低熔点尼龙6(LPA6)/液晶高分子(LCP)复合物对PVC进行共混改性,研究了LPA6/LCP含量对PVC/LPA6/LcP共混物力学性能及维卡软化温度的影响。结果表明:加入质量分数为10%以下的LPA6/LCP,可明显提高共混物的弯曲强度及弯曲模量;加入质量分数为30%以下的LPA6/LcP,可明显提高共混物的...  相似文献   

15.
PET/PEN共混体系的研究进展   总被引:1,自引:0,他引:1  
主要综述了PET/PEN共混体系的研究进展,重点讨论了PET/PEN共混体系的相容性、酯交换反应、热性能以及结晶性能,并对其在国内外应用前景做了展望。  相似文献   

16.
Binary blends of a reactive ethylene-based terpolymer with polybutylene terephthalate (PBT) and with a liquid crystalline polyester (LCP) were studied to clarify the possible interactions between the blended polymers. The aim was to determine the suitability of the reactive terpolymer containing epoxy reactivity as a compatibilizer in blends of polypropylene (PP) and these two polyesters. The binary blends exhibited increased viscosity during blending, changes in the crystallization of the PBT phase, and an intimate contact between the blended polymers, which pointed to strong interactions or chemical reactions between the compatibilizer and both PBT and LCP. FTIR analysis confirmed the reaction of the epoxide and formation of new esters. Most probably the carboxyl end groups of the polyesters reacted with the epoxy group of the compatibilizer. In the second part of the work the same terpolymer was shown to act as a compatibilizer in PP/PBT and PP/LCP blends. This behavior was based on good mixing with the PP phase and on the chemical reactivity or strong interactions with the polyesters demonstrated in the investigations on binary blends. Addition of 5 wt% of the compatibilizer improved the impact strength, especially in PP/PBT blends where synergistic behavior was found at compositions of 80/20 and 20/80. In PP/LCP blends, the compatibilizer significantly improved the impact strength of unnotched samples at 20 wt % LCP content. In both blends, the compatibilizer reduced the size of the dispersed domains and caused them to attach better in the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
液晶聚合物增强PC/PET共混物挤出片材的性能研究   总被引:4,自引:0,他引:4  
冯建民  李忠明 《塑料工业》1997,25(5):83-84,90
介绍液晶聚合物对PC/PET共混体系的增强改性。选用了六种不同熔眯的LCP引入到PC/PET共混体系中,用自制的有利于形成定向的口模,将共混物挤出成片材,并测定了拉伸强度,维卡软化点,结晶速率,结果表明:在PC/PET共混物中,加入少量LCP后,拉伸强度可比原体系提高30%左右,不同熔点的LCP影响有差异,熔点太高的LCP反而会使体系的拉伸强度下降,维卡软化点未见明显变化,当增大LCP用量后,体系  相似文献   

18.
The reactive compatibilization of immiscible polymers such as high‐density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) by interfacial grafting of maleic anhydride (MA) without initiator in the molten state was investigated in this study. Grafting reaction of MA onto HDPE was carried out in a Rheocord HAAKE mixer varying reaction parameters such as the temperature, the shear rate, and the time of reaction. Then, the purified copolymers were characterized by infrared spectrometry and the MA content of HDPE‐g‐MA copolymers was determined by volumetric titration. It has been shown that thermomechanical initiation is sufficient to reach grafting yield of 0.3 to 2.5 wt % of MA. We studied then the compatibilization of HDPE/PET blends by interfacial grafting of MA. The in situ interfacial reaction leads to the formation of HDPE‐g‐MA copolymer which acts as a compatibilizer in the blends. The foremost interest of this work is that it provides a simple way of compatibilization of immiscible blends of polyolefin and polyester in one transformation step without using free‐radical initiators. The mechanical properties of the blends are strongly improved by the addition of small quantities of MA. The SEM observations of the compatibilized blends show a deep modification of the structure (i.e., enhanced regularity in the nodule dispersion and better interfacial adhesion). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 874–880, 2001  相似文献   

19.
Summary The morphological stability and the mechanical properties of postconsumer polyethylene terephthalate (PET) and high density polyethylene (HDPE), at different composition with and without compatibilizer were investigated. The blends were prepared in an internal mixer and in a twin screw-extruder at different stretching ratio. For uncompatibilized blends, (previously prepared by extrusion), the particle size of the dispersed phase increases after being reprocessed in an internal mixer. However, in the case of compatibilized blend the particle size remains constant. Consequently, the compatibilizer reduces interfacial mobility, coalescence effects and stabilizes the morphology. The mechanical properties are also modified by the presence of the compatibilizer, mainly the elongation at break. Received: 14 January 2000/Accepted: 16 August 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号