首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, nanocrystalline titanium nitride (TiN) films have been deposited by reactive DC magnetron sputtering technique on the Si/SiO2 (100) substrates. The influence of nitrogen gas flow rate [0, 3, 5, 7 and 9 sccm (standard cubic centimeter per minute)] on the structural, morphological and electrical properties of the nanocrystalline TiN films has been studied. As-deposited TiN films have been characterized by using X-ray diffraction (XRD), XPS (X-ray photoelectron spectroscopy), FESEM (field emission scanning electron microscopy) and four point probe resistivity measurement, respectively. The XRD patterns revealed the HCP symmetry for pure Ti (N2 = 0 sccm) with (002) preferred orientations, and the FCC symmetry for TiN (N2 = 3, 5, 7 and 9 sccm) films having (111) preferred orientations. The lattice parameters were found to be a = 2.950 ?, c = 4.681? for the Ti (N2 = 0 sccm) film and a = 4.250Å for the TiN films. The presence of different phases such as TiN and TiO2 were confirmed by XPS analysis. The FESEM images showed a smooth morphology of the film with columnar grain structures. The grain size of the TiN films was found to decrease from 22 to 15 nm as the nitrogen flow rate is increased from 0 to 9 sccm. The electrical resistivity measurement showed that the resistivity of the film increased from 11 × 10?6 to 17 × 10?6 Ohm cm on increasing nitrogen flow rate from 3 to 9 sccm, having the lowest resistivity of 11 × 10?6 Ohm cm for the film deposited at 3 sccm nitrogen flow.  相似文献   

2.
A Grill 《Vacuum》1983,33(6):329-332
An ion beam source was used to deposit silicon nitride films by reactive sputtering a silicon target with an Ar+N2 beam. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 20×10?5 torr. The ion beam current was 50 mA at 500 V. A rate of deposition of about 2 nm min?1 (0.12 μm h?1) was found, and the spectra indicated that Si3N4 was obtained for a fraction of nitrogen higher than 0.50. However, the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.  相似文献   

3.
During the reactive magnetron sputtering of transition metal nitrides in an Ar-N2 ambient, Ar+ and N2+ plasma ions are neutralized upon impingement on the target and are backscattered towards the growing film as neutral Ar and N species, respectively. Based on simulations, as well as on plasma and on film characterization techniques we manifest the relationship between the bombardment by the backscattered energetic atoms and the properties of reactively sputtered vanadium nitride (VN) films. Depending on the N2 flow (qN2) two bombardment regimes are established. In the first regime, (qN2 < 20 sccm) the contribution of the N species to the energetic bombardment is insignificant. The major bombarding species in this regime are the backscattered Ar species, as well as positive plasma ions and sputtered atoms. These species have relatively low energies and subplantation ratios and thus, their energy is transferred to the surface of the growing film. In the second regime (qN2 > 20 sccm) the backscattered N atoms are the major bombarding species and their flux to the growing film increases with increasing the N2 flow. We argue that the backscattered N atoms have higher energy and subplantation ratio in comparison to the other bombarding species. As a result, a higher part of their energy is dissipated in the bulk of the film. The two bombarding regimes correlate well with the residual compressive stresses and the surface roughness of the films. Films grown at qN2 < 20 sccm exhibit low compressive stresses and their roughness drops when qN2 is increased. This consistent with the low subplantation ratio and the transfer of the energy of the bombarding species to surface the growing film. The compressive stresses of films grown at qN2 > 20 sccm are higher, than those of the films grown in the first regime, and increase with increasing N2 flow. This is attributed to the subplantation of the bombarding N species in the growing film.  相似文献   

4.
The main objective of the present work was to determine whether a single agropolymer [wheat gluten (WG)] could fit the modified atmosphere packaging (MAP) requirements of a range of six different fresh produce in key terms of oxygen permeation (PeO2) and CO2/O2 permselectivity (S) values. The required properties for optimal packaging of fresh fruits and vegetables were first evaluated using the Tailorpack MAP modelling software (UMR IATE, Montpellier, France) with packaging dimensions and respiratory and optimal atmosphere data as input parameters. Then, the modelled values obtained were compared with the properties of a range of WG composite films: monolayer self‐supported or multilayer at microscale or nanoscale, cast or thermoplasticised, with different formulations (percentage of plasticisers or nanofillers). The experimental gas transfer properties that could be covered by these materials ranged from 0.05 × 10?10 to 2.00 × 10?10 mol/m2 s Pa for PeO2 and up to 18.0 for S. These ranges are much larger than conventional plastics that exhibit PeO2 from 0.10 × 10?10 to 0.20 × 10?10 mol/m2 s Pa and S up to 4.5. It was demonstrated from a food‐requirements‐driven (Tailorpack modelling) and a multiscale film structuring (WG‐based composites) approaches, that transfer properties of WG‐based films would fit the requirements of the six selected fruits and vegetables better than conventional plastics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Cd3As2 films were prepared by a pulsed-laser evaporation technique. The deposition onto fused quartz substrates was carried out in a vacuum chamber under a background pressure of about 0.6 × 10?4 Pa. Energy-dispersive X-ray analysis, scanning electron microscopy, transmission electron microscopy and Hall measurements were used to characterize the films. The properties of the film as a function of their thickness and of the deposition parameters are discussed. It is shown that polycrystalline layers of Cd3As2 grow on substrates held at temperatures as low as 295 K. The room temperature electron concentrations and mobilities for such layers were (3.5–5.3) × 1018 cm?3 and (0.6–1.06) × 103 cm2 V?1 s?1 respectively.  相似文献   

6.
《Vacuum》2012,86(3):290-294
ITO thin films were prepared by changing the experimental parameters including gas flow ratio, sputtering pressure and sputtering time in DC magnetron sputtering equipment. The stable experimental parameters of Ar flow at 70 sccm, O2 flow at 2.5 sccm ∼ 3.0 sccm, sputtering pressure around 0.5 Pa, and sputtering time of 80 s were obtained. Under these parameters, we had achieved the ITO thin films with low resistivity (<4 × 10−4 Ω ∙ cm) and high average transmissivity (95.48%, 350 nm ∼ 1100 nm). These ITO thin films were applied in nanocrystalline silicon solar cells as top transparent conductive layer. The solar cell test result showed that the open circuit voltage (Voc) was up to 534.9 mV and the short circuit current density (Jsc) was 21.56 mA/cm2.  相似文献   

7.
Abstract

Hysteresis, crystal structure and chemical composition of thin films deposited through reactive sputtering of titanium metal target in Ar/CH4/N2 gas mixture have been investigated. The transition from metallic to compound sputtering mode was clearly seen as the reactive gases (CH4 and N2) flowrate concentration first increased and subsequently decreased. Abrupt cathode current drop from 273 mA to reach a minimum value of 195 mA was observed upon addition of nitrogen gas from 0 to 10% flowrate concentration to the Ar/CH4 gas mixture. This was also accompanied by an abrupt change in reactive gas partial pressure. Exploration of the deposition rate and film thickness showed that it decreased from 4·5 to 1·5 nm min?1 and from 140 to 40 nm as the N2 flowrate concentration increased from 1·5 to 7·5% at 5·5%CH4 flowrate concentration respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of titanium carbide and carbonitride phases as the methane and nitrogen gas concentrations in the sputtering gas were increased.  相似文献   

8.
N-doped CuAlO2 films were prepared by RF magnetron sputtering on quartz substrates using N2O as the N source. N concentration in the films is detected by Auger electron spectroscopy in detail, which confirms that N is indeed incorporated into the films. The optical and electrical properties of transparent conductive N-doped CuAlO2 films are modulated by the N2O flow ratio in sputtering gas. The N-doped films have a visible transmittance of 60–70 % and a high infrared transmittance of ~85 %. The film deposited by using 15 % N2O flow ratio with the optimal crystalline is provided with a conductivity of 3.75 × 10?2 S cm?1 at room temperature, which improves over one order of magnitude compared with the undoped film. The enhanced conductive property is mainly originated from the ionization of acceptor impurities.  相似文献   

9.
C.T. Wu 《Thin solid films》1979,64(1):103-110
The stresses in niobium films were studied and the following preliminary results were obtained. (1) Niobium films can be prepared in any stress state (tensile, stress free or compressive) by varying the argon sputtering pressure. (2) As the bias voltage increases, more argon is incorporated into the film; both Tc and R/R0 decrease; and the stress becomes more compressive and seems to saturate at about 1.5 × 1010 dyn cm?2 at higher bias voltages (at an argon sputtering pressure of 1.9 Pa). (3) The lattice parameters show a close relation to the film stresses. (4) Lowering the sputtering rate results in a higher argon content in the bias-sputtered films. (5) The as-deposited film surface is smoother when deposited at lower pressures; the film has a columnar structure and intercolumnar gaps at higher pressures. (6) The film prepared at a higher bias voltage has a smoother as-deposited surface and a much smaller column size.From this study of the behavior of the stresses in niobium films, it appears that the stress is determined mainly by the microstructure and the energetic particle bombardment. Energetic particle bombardment may promote compressive stress by the incorporation of argon, by the formation of a more dense microstructure and by a “shot-peening” action.  相似文献   

10.
In situ measurements of the film stress and the film reflectivity were carried out when samples of platinum film on silicon were sintered in an inert gas ambient. The reflectivity of the film dropped in two stages when the reaction between platinum and silicon transformed the platinum film to a Pt2Si film and then to a PtSi film. The kinetics of the silicide formations were studied by monitoring the film reflectivity in situ while the reaction was progressing. The activation energies for the Pt2Si phase and the PtSi phase formations were derived to be 1.2 eV and 1.7 eV respectively. The stress of the as-deposited platinum films is 1 × 108 Pa. The room temperature stress of the final PtSi film is 1.5 × 109 Pa in which the thermal stress component is far greater than the intrinsic component.  相似文献   

11.
SnO2 and In2O3 films were produced by evaporation and by magnetron sputtering of the elements in an atmosphere containing oxygen. The insulating substrate of glass or plastic was water cooled and made one electrode of an r.f. discharge in the gas. The optical and electrical properties of the films indicated that the energy of the bombarding ions, measured by the d.c. standing voltage that developed on the substrate due to r.f. discharge, gave properties that had only previously been obtained using substrate temperatures of 450°C and above.The SnO2 films were insulating. The In2O3 films were conducting, a minimum value of the sheet resistivity (187 Ω being achieved with evaporated films at a bias of ?400 V and a value of 630 Ω being obtained with sputtered films at a bias of ?160 V with a 30 vol.% O2?70 vol.% Ar gas mixture. All films were about 80 nm thick. The ultraviolet absorption edge position proved to be related to the refractive index and the conductivity. Hall effect measurements gave a carrier concentration of 4 × 1025 m?3 with a mobility of 1.9 × 10?3 m2 V?1 s?1 for the best sputtered film.  相似文献   

12.
The mid-frequency pulsed plasma enhanced chemical vapour deposition (PECVD) of hydrogenated amorphous silicon carbonitride (a-SiCN:H) was investigated to prove the suitability of these films as a mechanical stiff insulator for the integration of piezoelectric fibres in microstructured aluminium plates. For the a-SiCN:H deposition trimethylsilane (SiH(CH3)3; 3MS) and nitrogen in mixture with argon were used. The films were characterised regarding their deposition rate, elastic modulus and hardness (nanoindentation), mechanical stress, elemental composition (ERDA) and electrical insulating properties.The breakdown field strength of μm-thick a-SiCN:H films is in the range of 2–4 MV/cm. At pressures of a few Pa the deposition rate reached values up to 6 μm/h. It is limited by the power absorption in the 100 kHz bipolar-pulsed discharge. Varying the pressure from 2 Pa to 15 Pa has only little influence on the film composition. With increasing pressure during deposition the elastic modulus of the films decreases from about 146 GPa to 100 GPa and the compressive film stress from 1.2 GPa to 0.55 GPa. By reducing the 3MS flow rate from 50 sccm to 10 sccm (at 8 Pa deposition pressure), the carbon and the hydrogen concentrations in the films were reduced by about 10 at. %. The Si-content is only slightly reduced but the N-content is more than tripled. In contrast, the changes in the mechanical film properties are comparatively small. The mechanical properties of a-SiCN:H films are not simply correlated to the stoichiometry but are rather controlled by the ion bombardment during growth.  相似文献   

13.
In this study, thin films of Ag deposited onto glass substrates were etched using inductively coupled fluorine-based plasmas. The effects of various process conditions on the Ag etch characteristics were evaluated to ascertain whether it would be possible to etch patterned Ag films with high etch rates and smooth sidewalls free of involatile etch products. It was found that involatile etch products remained on the substrate when films were etched in CF4-based gas mixtures possessing either O2 or N2 as an additive. However, when Ar was added to either NF3 or CF4, a residue-free etch was obtained provided the partial pressure of Ar was no less than 50%. It is proposed that the residue-free Ag etch mechanism involves the formation of silver fluoride, which is physically sputtered by Ar+ ions. A Ag etch rate of 160 nm/min with a Ag to photoresist etch selectivity exceeding 1.1 was achieved with an inductive power of 1500 W, a d.c. bias voltage of −180 V and a chamber pressure of 0.8 Pa with 50-50 CF4/Ar partial pressures obtained with 60 sccm CF4/60 sccm Ar flows. In addition, these conditions produced smooth Ag sidewall etch profiles.  相似文献   

14.
Cu2ZnSnS4 (CZTS) thin films were prepared by sulfurizing single-layered metallic Cu–Zn–Sn precursors which were deposited by DC magnetron sputtering using a Cu–Zn–Sn ternary alloy target. The composition, microstructure and properties of the CZTS thin films prepared under different sputtering pressure and DC power were investigated. The results showed that the sputtering rate of Cu atom increases as the sputtering pressure and DC power increased. The microstructure of CZTS thin films can be optimized by sputtering pressure and DC power. The CZTS thin film prepared under 1 Pa and 30 W showed a pure Kesterite phase and a dense micro-structure. The direct optical band gap of this CZTS thin film was calculated as 1.49 eV with a high optical absorption coefficient over 104 cm?1. The Hall measurement showed the film is a p-type semiconductor with a resistivity of 1.06 Ω cm, a carrier concentration of 7.904 × 1017 cm?3 and a mobility of 7.47 cm2 Vs?1.  相似文献   

15.

Synthesis of nitrogen-doped graphene (NDG) via chemical vapor deposition (CVD) using phthalocyanine, a solid precursor containing carbon and nitrogen, is reported. The effect of the growth parameters (temperature, time, and carrier gas) on the surface morphology, dopant configuration, and conductivity of the films was studied. The NDG films were synthesized at different substrate temperatures of 1050 °C, 950 °C, and 850 °C for different growth times of 5–15 min in the presence of an Ar?+?H2 gas mixture. Significantly, pyrrolic-N type defects are observed predominantly after 5 min of growth time. At 1050 °C, pyrrolic N content is around 45.4% after 5 min of growth which decreased to 24.1% after 15 min of growth, while the graphitic-N content increased from 41.2 to 76% at the same time. It is demonstrated that the conversion of pyrrolic type of nitrogen to graphitic nitrogen defects can be arrested by changing the carrier gas from Ar?+?H2 to Ar. The pyrrolic-N content increased to 64% by changing the gas from Ar?+?H2 to Ar at 15 min. The electrolyte gated field-effect transistors were fabricated using the obtained films, and dopant-dependent mobility was observed. The mobility for pyrrolic-N-dominated film is 13.6 cm2 V?1 s?1 increasing to 62.8 cm2 V?1 s?1 for graphitic-N-dominated film.

  相似文献   

16.
ITO thin films were prepared by changing the experimental parameters including gas flow ratio, sputtering pressure and sputtering time in DC magnetron sputtering equipment. The stable experimental parameters of Ar flow at 70 sccm, O2 flow at 2.5 sccm ∼ 3.0 sccm, sputtering pressure around 0.5 Pa, and sputtering time of 80 s were obtained. Under these parameters, we had achieved the ITO thin films with low resistivity (<4 × 10−4 Ω ? cm) and high average transmissivity (95.48%, 350 nm ∼ 1100 nm). These ITO thin films were applied in nanocrystalline silicon solar cells as top transparent conductive layer. The solar cell test result showed that the open circuit voltage (Voc) was up to 534.9 mV and the short circuit current density (Jsc) was 21.56 mA/cm2.  相似文献   

17.
《Thin solid films》2005,471(1-2):40-47
Thin films of CoFe2O4 have been fabricated by pulsed laser ablation of a metallic CoFe2 target at two different temperatures (200 and 400 °C) and in various O2:N2, 20:80 pressures [from 0.7 Pa (5×10-3 Torr) up to 26.7 Pa (2×10-1 Torr)]. Too low pressures resulted in an insufficient oxidation of the deposited material and an antiferromagnetic (Fe,Co)O phase is observed together with CoFe2O4. A minimum pressure of 6.7 Pa was found necessary to obtain pure CoFe2O4 films with magnetic properties close to the bulk. The higher the pressure and the temperature, the larger was the roughness of the films. The optimum deposition temperature and pressure to obtain flat (3 nm rms roughness) CoFe2O4 films were, respectively, 200 °C and 6.7 Pa.  相似文献   

18.
In the present study, thin films of cadmium selenide (CdSe) are deposited on ITO substrate by electrodeposition method using aqueous solution of 3CdSO4·8H2O and SeO2. These films are implanted with 40 keV N+ ions with different fluencies i.e. 1?×?1015, 5?×?1015, 1?×?1016 and 5?×?1016 ions/cm2 using a beam current of 0.9 µA. The structural, morphological, optical and electrical properties of pristine and nitrogen ion-implanted CdSe thin films are analyzed using XRD, SEM, AFM, UV-PL Spectrophotometer and I–V four probes setup. XRD analysis revealed the effects of nitrogen ions on the structural parameters such as grain size, FWHM, micro strain and dislocation density etc. Crystallanity of the material increased with increase in implantation dose. SEM and AFM analysis show decrease in the surface roughness with implantation. From the optical studies, band gap value decreased from 2.50 to 2.29 eV with increase in N+ implantation doses. Noticeable changes in the electrical properties are also reported. The effect of N+ ion implantation on the properties of CdSe thin films are discussed on the basis of lattice disorder.  相似文献   

19.
The boron(B)- and phosphorous(P)-doped microcrystalline silicon (Si) thin films were prepared by magnetron sputtering of heavily B- and P-doped Si targets followed by rapid thermal annealing (RTA), their electrical properties were characterized by temperature-dependent Hall and resistivity measurements. It was observed that the dark conductivity and carrier concentration of the 260 nm B-doped Si films annealed at 1,100 °C in Ar were 3.4 S cm?1 and 1.6 × 1019 cm?3, respectively, which were about one order of magnitude higher than that of P-doped Si films. The activation energy of the B- and P-doped Si films were determined to be 0.23 eV and 0.79 eV, respectively. The dark conductivity of B- and P-doped Si films increased with the increase of film thickness, RTA temperature, and the incorporation of H2 in Ar during RTA. The present work provides an easy and non-toxic method for the preparation of doped microcrystalline Si thin films.  相似文献   

20.
ZnO epitaxial thin films were grown on p-type Si(100) substrates by dual ion beam sputtering deposition system. The crystalline quality, surface morphology, optical and electrical properties of as-deposited ZnO thin films at different growth temperatures were studied. Substrate temperature was varied from 100 to 600 °C at constant oxygen percentage O2/(O2 + Ar) % of 66.67 % in a mixed gas of Ar and O2 with constant chamber pressure of 2.75 × 10?4 mBar. X-Ray diffraction analyses revealed that all the films had (002) preferred orientation. The minimum value of stress was reported to be ?0.32 × 1010 dyne/cm2 from ZnO film grown at 200 °C. Photoluminescence measurements demonstrated sharp near-band-edge emission (NBE) was observed at ~375 nm along with deep level emission (DLE) in the visible spectral range at room temperature. The DLE Peak was found to have decrement as ZnO growth temperature was increased from 200 to 600 °C. The minimum FWHM of the NBE peak of 16.76 nm was achieved at 600 °C growth temperature. X-Ray photoelectron spectroscopy study revealed presence of oxygen interstitials and vacancies point defects in ZnO film grown at 400 °C. The ZnO thin film was found to be highly resistive when grown at 100 °C. The ZnO films were found to be n-type conducting with decreasing resistivity on increasing substrate temperature from 200 to 500 °C and again increased for film grown at 600 °C. Based on these studies a correlation between native point defects, optical and electrical properties has been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号