首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical copolymerization of acrylonitrile (AN) with styrene (Sty), using x,x′-azobisisobutyronitrile as initiator, was carried out in the presence of zinc chloride (ZnCl2) dilatometrically at 65/pm 0.1 C for 120min. The rate of polymerization was a direct function of the concentrations of ZnCl2, AN and Sty, and polymerization temperature. The viscosity-average molecular weight of the copolymer increased with ZnCl2 concentration. The energy of activation in the presence and absence of the complex was evaluated as 82.5 kJ mol?1 and 115.5 kJ mol?1, respectively. The copolymerization of AN with Sty proceeded via the radical-complex mechanism.  相似文献   

2.
A comparative study on photoinitiated solution copolymerization of n‐butylacrylate (BA) with styrene (Sty) using pyrene (Py), 1‐acetylpyrene (AP), and 1‐(bromoacetyl)pyrene (BP) as initiators showed that the introduction of a chromophoric moiety, bromoacetyl (? COCH2Br), significantly increased the photoinitiating ability of pyrene. The kinetics and mechanism of copolymerization of BA with Sty using BP as photoinitiator have been studied in detail. The system follows nonideal kinetics (Rp ∝ [BP]0.34 [BA]1.07 [Sty]0.97). The nonideality was attributed to both primary radical termination and degradative initiator transfer. The monomer reactivity ratios of Sty and BA have been estimated by the Finemann–Ross and Kelen–Tudos methods, by analyzing copolymer compositions determined by 1H NMR spectra. The values of r1 (Sty) and r2 (BA) were found to be 0.78 and 0.25, respectively, which suggested the high concentration of alternating sequences in the random copolymers obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3233–3239, 2006  相似文献   

3.
The kinetic investigation of the radical copolymerization of methylacrylate (MA) with styrene (Sty) using zinc chloride (ZnCl2) as an accelerator was carried out at 60 ± 0.1 °C for 120 min. The rate of polymerization was proportional to the concentrations of ZnCl2 and monomers. The energies of activation in the presence and absence of the complex are 34 and 89 kJ mol?1, respectively.  相似文献   

4.
Semicontinuous emulsion copolymerization of acrylonitrile (M1), butyl acrylate (M2), and styrene (M3) was investigated. The copolymerization proceeded under the conditions used with a high degree of conversion, whereby a stationary state characterized by a constant monomer mixture composition and a constant composition of the arising copolymer was achieved. From the analytically estimated free monomers and arising copolymer compositions, the reactivity ratios for the pair AN/BA r12 = 0.71, r21 = 1.17 and for the pair AN/Sty r13 = 0.06, r31 = 0.28 were calculated. The applicability of the reactivity ratios found was verified also for the ternary system acrylonitrile/butyl acrylate/styrene.  相似文献   

5.
A series of aqueous latexes with solid contents of 56%–59% were synthesized by binary emulsion copolymerization of vinylidene chloride (VDC) with an acrylate, namely methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), hexyl acrylate (HA), or 2‐ethylhexyl acrylate (EHA). Differential scanning calorimetry (DSC) and Fourier‐transform infrared (FTIR) spectroscopy showed that the acrylate units with short ester side‐chains, such as MA and EA, made the copolymers hard and the crystallization tendency of their PVDC segments was reduced. Hydrophobic acrylates with relatively long ester groups, such as HA and EHA, gave flexible copolymers, and favored the crystallization of their PVDC segments. BA endowed the copolymers with medium flexibility and crystallization tendency. As coating materials, the copolymers bearing MA and EA adhered poorly to the tinplate before or after 100 hr of salt‐spray corrosion, whereas those bearing BA, HA, or EHA showed good adhesion to tinplate when they had little or no crystallinity. After 100 hr of salt‐spray corrosion, only BA–VDC80, containing 80% VDC, retained both excellent adhesion to metal and excellent barrier performance. Further study demonstrated that BA–VDC80 could protect tinplate from rusting for at least 250 hr under harsh salt‐spray corrosion. Scanning electron microscopy, FTIR‐attenuated total reflectance spectroscopy and DSC were used to evaluate the corroded BA–VDC80 film. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40192.  相似文献   

6.
Studies have been made on the melt rheological properties of poly(vinyl chloride) (PVC) with copolymers of methyl methacrylate (MMA) and methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA) at a blending ratio of 80:20. Effect of blend composition on shear stress–shear rate, melt viscosity, melt elasticity, and extrudate distortion have been studied. A significant decrease in the melt viscosity is observed on incorporation of low Tg, acrylate copolymers such as those with BA and EHA, thereby reducing the processing temperature. First normal stress and die swell ratio also decreases with an increase in the side chains of acrylate copolymer. PVC blended with P(MMA-co-BA) and P(MMA-co-EHA) is sensitive to both temperature and shear stress.  相似文献   

7.
In this article, three copolymers used as denture base resins were prepared via suspension copolymerization using butyl acrylate (BA), butyl methacrylate (BMA), or methyl acrylate (MA) with methyl methacrylate (MMA), respectively. The homopolymers and copolymers were characterized by 13C nuclear magnetic resonance (13C NMR). The influence of the three comonomers on the mechanical property was investigated in details and the fracture surfaces of copolymer specimens were examined using scanning electron microscopy (SEM). Meanwhile, the Tg values of three copolymers were examined by differential scanning calorimetry (DSC). The results indicate that, poly(methyl methacrylate) (PMMA) copolymers with BA, BMA, or MA have been successfully prepared via suspension copolymerization. The presence of BA, BMA, or MA could improve the mechanical property especially the impact strength, the toughness of the materials was remarkably improved. The toughening effect of BMA monomer is most significant. When the content of BA is 2 wt %, the flexural strength improves by 51% and the impact strength improves by 81.3%. The Tg values of three copolymers all decrease. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
No alternating copolymers of vinyl acetate (VAc) and butyl acrylate (BA) were obtained by free radical copolymerization in the presence of GeCl4 and BCl3 (compared with the acrylic acid–vinyl acetate copolymerization system). By ultraviolet spectral analysis, it was concluded that both BCl3 and GeCl4 can form complexes with butyl acrylate. The BA–BCl3 complex constants were determined by 1H NMR; KB=33·2 (25°C). The reason for the gel formation in the BA–Vac–BCl3 copolymerization system was discussed. When vinyl acetate reacted with BCl3, cationic polymerization probably occurred. A white gel product probably resulted from the polymerization of the BA–BCl3 complex. © 1998 SCI.  相似文献   

9.
2-thiozyl methacrylamide (TMA) was synthesized by the reaction of 2-aminothiazole with either methacryloyl chloride or methacrylic acid in the presence of triethylamine and N, N′-dicyclohexylcarbodiimide, respectively. Binary copolymerization reactions of the prepared monomer with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA) and tert-butylacrylate (t.BA) were performed in dimethylformamide at 65 ○C using 1 mol% azobisisobutyronitrile (AIBN) as initiator. The structure of the 2-thiozyl methacrylamide monomer and the prepared copolymers was investigated by IR and 1H NMR spectroscopy. The copolymer compositions were determined from sulphur analysis. Copolymerization parameters for each system were calculated by the Finemen–Ross and Kelen–Tüdös methods. The monomer reactivity ratios for the systems TMA-MA, TMA-EA, TMA-BA, and TMA-tBA were found to be r1=0.128, r2=0.740; r1=0.235, r2=0.420; r1=0.420, r2=0.330 and r1=1.690, r2=0.027, respectively. The reactivities of acrylic esters decrease as the alkyl group become bulkier. The average Q and e values for TMA were calculated from the monomer reactivity ratios determined in the present and previous studies.  相似文献   

10.
Ethyl acrylate (EA), butyl acrylate (BA), and vinyl acetate (VAc) have been graft copolymerized onto Himachali wool fiber in an aqueous medium by using Mn(AcAc)3 as an initiator. Graft copolymerization was studied at 45°, 55°, 65° and 75°C for various reaction periods. Percentage of grafting and percent efficiency were determined as functions of concentration of monomer, concentation of initiator, concentration of nitric acid, time, and temperature. Several grafting experiments were carried out in the presence of various additives which included: (i) pyridine and (ii) Et3 N. EA, BA, and VAc were found to differ in reactivity towards grafting and followed the order: EA > BA > VAc.  相似文献   

11.
In the present article, characterization of wool grafted with acrylate monomers such as methyl methacrylate (MMA), methylacrylate (MA), ethylacrylate (EA), and butylacrylate (BA) with respect to thermal behavior and viscosity average molecular weight (Mv ) is described. The modified wool shows improved thermal behavior.  相似文献   

12.
Radical copolymerization of ethyl acrylate (EA) and butyl acrylate (BA) with 4-maleimidobenzanilide (MB), that is N-[4-N′-(phenylaminocarbonyl)phenyl]maleimide, initiated by AIBN was performed in THF solvent at 65°C. Nine copolymer samples of each type were prepared using different feed ratios of comonomers. All the polymer samples have been characterized by solubility test, intrinsic viscosity measurements, FT-IR and 1H-NMR spectral analysis, and thermo-gravimetric analysis. The values of monomer reactivity ratios r1 and r2 are 1.13 and 0.48 in MB/EA system and 0.45 and 0.52 MB/BA system. Alfrey-Price Q-e values for MB were Q = 1.31 and e = 1.33 in MB/EA and Q = 2.04 and e = 2.06 in MB/BA systems. The initial decomposition temperature of copolymer samples were in the range 310 to 365°C.  相似文献   

13.
Radical copolymerization of methyl methacrylate (MMA)-allyl methacrylate (AMA) in the presence of zinc chloride, using azoisobutyronitrile (AIBN) as initiator has been carried out. The copolymerization rate increases with the concentration of ZnCl2 and the reactivity ratios are modified by the concentration of ZnCl2 which is explained by the different tendency towards the formation of complexes between MMA and AMA with ZnCl2.  相似文献   

14.
In this article, the morphological transformation in Hibiscus sabdariffa stem fiber through graft copolymerization with effective ethyl acrylate (EA) and its binary vinyl monomeric mixtures using ceric ammonium nitrate—nitric acid initiator system has been reported. Different reaction parameters such as temperature, time, initiator concentration, monomer concentration, and pH were optimized to obtain the maximum graft yield (117.3%). The optimized reaction parameters were then used to screen the additive effect of EA with n‐butyl acrylate (BA), acrylic acid (AA), and 4‐vinyl pyridine (4‐VP) in binary vinyl monomer mixtures on percentage grafting, properties, and the behavior of the fiber. The graft copolymers were characterized by FTIR, SEM, XRD, TGA, and DTA techniques and evaluated for physico‐chemical changes. With increase in the Pg a significant physico‐chemico‐thermal resistance, miscibility in organic solvents, hydrophobicity were found to increase, whereas crystallinity, crystallinity index, dye‐uptake, and hydrophylicity decreased, however, the cellulose form I remained unchanged. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In an attempt to develop new reactive membrane materials, we graft‐copolymerized styrene (Sty) and acrylonitrile (AN) onto cellulose extracted from pine needles by a chemical initiation method. The optimum grafting reaction conditions for Sty onto cellulose were earlier evaluated as [Sty] = 656.25 mmol/L and [potassium persulfate–ferrous ammonium sulfate] = 146.3:12.75mmol/L in 20 mL of H2O with a reaction time of 3 h and a reaction temperature of 60°C for 1 g of cellulose. Under these conditions, Sty was graft‐copolymerized with AN at five different concentrations of the latter. Grafting parameters and different rates of concentration were evaluated. The effects of additives such as ZnCl2, LiNO3, and Cu(NO)3 were studied at the best comonomer concentration of Sty–AN. In the presence of ZnCl2, Sty–AN graft‐copolymerized in an alternate way, thus, making it evident that ZnCl2 coordinated to form a “complexomer,” or complex of monomers [Sty?AN+…ZnCl2], of two monomers. Evidence of the structural characteristics of grafted chains were provided by characterization with elemental analysis, thermal analysis, and Fourier transform infrared spectroscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2000–2007, 2002  相似文献   

16.
The graft copolymerization was carried out by methyl acrylate with sago starch in which ceric ammonium nitrate was used as an initiator. It has been found that the rates of graft polymerization and grafting efficiency were dependent upon the concentration of ceric ammonium nitrate (CAN), methyl acrylate (MA), sago starch (AGU, anhydro glucose unit), mineral acid (H2SO4), and as well as reaction temperature and period. A rate equation of polymerization was established from the proposed reaction mechanism, and the rate of polymerization (Rp) was the first‐order dependence of the MA monomer concentration and square root of the CAN concentration. A new kinetic model of the grafting reaction has been proposed, and a normal kinetics of methyl acrylate polymerization was observed. An equation of a predicted model relating the graft fraction of poly(methyl acrylate) with the sago starch has been derived, and validity of the predicted model was verified by the experimental results. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 784–791, 2000  相似文献   

17.
The free radical copolymerizations of methyl methacrylate (MMA), ethyl acrylate (EA), and butyl acrylate (BA) with N-2-Anisylmaleimide (AMI), initiated by AIBN, were performed in THF solvent at 65°C. A series of copolymers of AMI-MMA, AMI-EA, and AMI-BA were prepared using different feed ratios of comonomers. The polymer samples have been characterized by solubility tests, intrinsic viscosity measurements, FT-IR, and 1H-NMR spectral analysis, and thermo-gravimetric analysis. The values of monomer reactivity ratios r1 and r2 determined by Fineman-Ross and Kelen-Tudos methods are 0.43 and 0.42 in AMI/MMA, 0.72 and 0.62 in AMI/EA and 0.76 and 0.72 in AMI/BA systems. Alfrey-Price Q-e values for AMI are Q = 3.13 and e = 1.71 in AMI/MMA, Q = 1.10 and e = 1.46 in AMI/EA and Q = 1.02 and e = 1.63 in AMI/BA systems. It was found that the initial and final decomposition temperature increased with increasing the component of AMI in the copolymer.  相似文献   

18.
Fundamental studies were carried out to modify the thermal properties of polyvinyl chloride (PVC)-based latices. General features of composite PVC-vinyl acetate (VAc) copolymer latices synthesized from the seed emulsion polymerization of acrylic monomers are reported, in particular, the observation of particle morphology and the measurements of minimum film formation temperature (MFT) and DSC spectra. Acrylic monomers used as modifiers were methyl methacrylate (MMA), n-butyl methacrylate (BMA), methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (nBA), and MMA-nBA 75:25,50:50 and 25:75 wt%. Styrene whose polymer is incompatible with PVC-VAc was used as a counterpart of compatible PMMA. Compatibility between seed and modifier polymer and the mode of operation, either batch (flooded and pre-swollen) or semi-batch (starved and no swelling), induced morphology differences, and consequently variations of thermal properties.  相似文献   

19.
以丙烯酸甲酯(MA)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、环氧树脂和乳化剂分别制备核、壳预乳化剂,然后通过种子乳液聚合法制备了具有核壳结构的聚合乳液。以环氧树脂E-44和有机硅氧烷KH-570对聚合乳液进行改性,制备了印花涂料用乳液。研究了乳化剂和核壳单体的配比以及不同改性剂用量对乳液稳定性和成膜性能的影响。结果表明,制备乳液的较佳条件为:复合乳化剂[m(十二烷基硫酸钠)∶m(非离子型乳化剂OS-15)=1∶3]的质量分数为4%,核单体组成为m(MA)∶m(EA)∶m(BA)=1∶1∶3、质量分数为30%~40%,壳单体组成为m(MA)∶m(EA)∶m(BA)=2∶1∶1,改性剂环氧树脂E-44和有机硅氧烷KH-570的用量分别为2%和6%。当烘焙工艺条件为140℃/3min时,制得的印花涂料涂膜在弹性、手感、牢度等性能指标方面均达到了设计要求。  相似文献   

20.
Fairly uniform copolymer particles of methyl acrylate (MA), butyl acrylate (BA), or butyl methacrylate (BMA) were synthesized via Shirasu porous glass (SPG) membrane and followed by suspension polymerization. After a single‐step SPG emulsification, the emulsion composed mainly of the monomers. Hydrophobic additives of dioctyl phthalate (DOP), polystyrene molecules, and an oil‐soluble initiator, suspended in an aqueous phase containing poly(vinyl alcohol) (PVA) stabilizer and sodium nitrite inhibitor (NaNO2), were subsequently subjected to suspension polymerization. Two‐phase copolymers with a soft phase and a hard phase were obtained. The composite particles of poly(St‐co‐MA)/PSt were prepared by varying the St/PSt ratios or the DOP amount. The addition of PSt induced a high viscosity at the dispersion phase. The molecular weight slightly increased with increasing St/PSt concentration. The multiple‐phase separation of the St‐rich phase and PMA domains, observed by transmission electron microscopy, was caused by composition drift because the MA reactivity ratio is greater than that of St. The addition of DOP revealed the greater compatibility between the hard‐St and soft‐MA moieties than that without DOP. The phase morphologies of poly(St‐co‐MA), poly(St‐co‐BMA), and their composites with PSt were revealed under the influence of DOP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1195–1206, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号