首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most important metallurgical effects of ladle treatment of aluminium-killed steels with calcium, are associated with the modification of alumina inclusion. For the development of the deoxidation-control model for inclusions, the thermodynamic slag model, based on the Gibbs energy minimization and modelling approaches postulated from J. Hastie et al., was used to calculate component oxide activities in the system CaO–Al2O3 and part of systems 3CaO · Al2O3 – SiO2, 12 CaO · 7Al2O3 – SiO2 and CaO · Al2O3 – SiO2 at 1600°C.  相似文献   

2.
Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.  相似文献   

3.
Calcium treatment is a well-established way to modify solid alumina inclusions to liquid or partially liquid calcium aluminates. Spinels (Al2O3·xMgO) can also form in liquid steel after aluminum deoxidation. Like alumina, the spinels can be modified readily to liquid inclusions by a calcium treatment. The modification of spinels was studied by observing the transient evolution of inclusions, in laboratory and industrial heats. Spinel modification involves the preferential reduction of MgO from the spinel, with Mg dissolving in the steel, and it proceeds through transient calcium sulfide formation, just like in the case of alumina inclusions. Because magnesium dissolves in steel after the calcium treatment of spinels, the reoxidation of the melt will produce new spinels.  相似文献   

4.
J. Xu  F. Huang  X. Wang  C. Jing  X. Guo 《钢铁冶炼》2017,44(6):455-460
Industry trials were carried out to study the removal efficiency of inclusions in Al-killed liquid steel in the processes of BOF–LF–RH–CC and BOF–RH–CC. It was found that the removal efficiency of inclusions has a high dependence on inclusion types. Solid inclusions are more easily to be removed than liquid inclusions. The removal efficiency of solid Al2O3 inclusions is higher than that of solid CaO–Al2O3–MgO inclusions. As liquid CaO–Al2O3–MgO inclusions coexisted with solid CaO–Al2O3–MgO inclusions in the liquid steel, the low removal efficiency of inclusions in RH degassing process was found in BOF–LF–RH–CC process. However, high removal efficiency and ultra-low total oxygen (T.O) content were obtained in BOF–RH–CC process because the inclusions were mainly composed of solid Al2O3 although initial T.O content before RH degassing was relatively high. This is due to the fact that solid Al2O3 tends to form cluster-shaped inclusions which have both a higher contact angle and a lower work of adhesion with steel than calcium aluminate, resulting in easier removal by RH degassing. Therefore, it is proposed to weaken steel–slag reaction and calcium treatment before RH degassing to retain solid Al2O3 inclusions in the steel.  相似文献   

5.
Herein, the formation and evolution mechanism of inclusions of Al2O3·SiO2·CaO and Al2O3·SiO2·CaO·MgO in seamless steel tube steel are investigated. In the long strip defects on the longitudinal cross section of the steel tube after the rolling bar piercing, the defect is mainly formed by Al2O3·SiO2·CaO·MgO inclusions and Al2O3·SiO2·CaO·inclusions dotted with·CaS inclusions after the rolling. The typical inclusions in the different steelmaking stages are mainly composed of CaS, Al2O3·(SiO2), CaO·(SiO2), MnS·(TiN), Al2O3·SiO2·CaO·(CaS)·(MnS), Al2O3·SiO2·CaO·MgO·(MnO), Al2O3·SiO2·CaO·MgO·(CaS)·(MnS), etc. In the billet, the average sizes of Al2O3·SiO2·CaO-based and Al2O3·SiO2·CaO·MgO-based inclusions are much larger than those of the other types of inclusions. Part of SiO2 in the deoxidized products SiO2 can be reduced by [Al], resulting in the formation of the Al2O3·SiO2 composite inclusions. The SiO2 in Al2O3·SiO2 inclusions can continuously be reduced by the dissolved [Ca] to form the Al2O3·SiO2·CaO composite inclusions. The SiO2 in the Al2O3·SiO2·CaO inclusions can be reduced by the dissolved [Mg] to form the Al2O3·SiO2·CaO·MgO composite inclusions. Another formation process of Al2O3·SiO2·CaO·MgO inclusions is the entrapment of ladle slag in the vacuum degassing (VD) stage, due to the strong agitation of the rising Ar bubbles in the vacuum condition of the VD stage.  相似文献   

6.
The transformation of MgO ? Al2O3 based inclusions in alloy steel during refining has been studied by industrial trials. Besides Factsage software is used to study the formation and modification of spinel inclusions in alloy steel using calcium treatment during refining process. The results show that the transformation sequence of inclusions is: MgO ? Al2O3→CaO-Al2O3-MgO complex inclusions→MgO ? Al2O3, and under present experimental condition, in order to avoid forming MgO ? Al2O3 inclusions the content of dissolved Ca in the molten steel has to reach 1×10?6. Also the results show that when more calcium was added to molten steel, the content of Al2O3 and MgO will be lower. Besides, increasing the content of CaO in the inclusions will increase even if the content of SiO2 changes little.  相似文献   

7.
In the current study, the effect of S content in the molten steel on inclusions during calcium treatment was studied using an induction furnace. The calcium in steel decreased from 48 to 2 ppm, and the sulfur in steel changed a little with time. When sulfur content in steel was as low as 25 ppm during calcium treatment, inclusions shifted from CaO-Al2O3-CaS to Al2O3-CaO with about 35 pct CaO. When the sulfur increased over 90 ppm, more CaS-CaO formed just after the addition of calcium, and then the CaS content decreased from over 45 pct to lower than 15 pct and inclusions were mostly Al2O3-CaO-CaS and Al2O3-CaO with a high Al2O3 content. Thermodynamic calculation predicted the variation of the composition of inclusions, indicating good agreement with the measurement, while a certain deviation existed, especially for heats with 90 and 180 ppm sulfur. A reaction model was proposed for the formation of CaO and CaS, which considered the reaction between calcium vapor bubbles in the zone and the dissolved oxygen and sulfur in the molten steel, as described by a Langmuir-type adsorption isotherm with a reaction occurring on the remaining vacant sites. The variation of transient CaS inclusions was discussed based on the thermodynamic calculation and the morphology evolution of typical inclusions containing CaS.  相似文献   

8.
Contrasting experiments of Al killed 60Si2MnA spring steel were carried out between using and excluding calcium treatment under LF refining slags with low and high basicity ratios (R: CaO/SiO2?=?3.4, 5.0), respectively. Results showed the high basicity refining slag had a certain effect on controlling inclusions and improving the cleanness of spring steel similarly to calcium treatment. The T.[O] (total oxygen) content of steel without calcium treatment got to below 15?ppm and the fatigue life was long, up to 7.8?×?106?cycles. But in order to reduce the T.[O] below 10?ppm, as well as inclusion number and size in spring steel further, meanwhile, the appropriate calcium treatment should still be used. Besides, as the [Ca] content in the steel with calcium treatment increased, inclusions transformed from Al2O3–SiO2–CaO–MgO to Al2O3–SiO2–CaO–MgO–CaS completely, which reduced the formations of voids between inclusions and steel matrix, and voids decreased with the increase of CaO/Al2O3 value and CaS content of inclusions. Finally, the fatigue life of spring steel with high basicity slag and calcium treatment increased to 9.1?×?106 cycles.  相似文献   

9.
The effect of calcium treatment and/or aluminum-based deoxidant addition on the oxygen control and modification of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting (P-ESR) of H13 die steel with low oxygen content was experimentally studied. It is found that all the inclusions in the consumable electrode are MgO·Al2O3 spinels, besides a few MgO·Al2O3 spinels surrounded by an outer (Ti,V)N or MnS layer. After P-ESR refining combined with proper calcium treatment, all the original MgO·Al2O3 spinels in the electrode (except for the original MgO·Al2O3 spinels having been removed in the P-ESR process) were modified to mainly CaO-MgO-Al2O3 and some CaO-Al2O3 inclusions, both of which have a low melting point and homogeneous compositions. In the case of only Al-based deoxidant addition, all the oxide inclusions remaining in ESR ingots are MgO·Al2O3 spinels. The operation of Al-based deoxidant addition and/or calcium treatment during P-ESR of electrode steel containing low oxygen content is invalid to further reduce the oxygen content and oxide inclusions amount compared with remelting only under protective gas atmosphere. All the original sulfide inclusions were removed after the P-ESR process. Most of the inclusions in ESR ingots are about 2 μm in size. The mechanisms of non-metallic inclusions evolution and modification of MgO·Al2O3 spinels by calcium treatment during the P-ESR process were proposed.  相似文献   

10.
The objectives of this study were to investigate reactions of calcium with Al2O3 by different model experiments both on the laboratory and on the industrial scale. Experiments with solid Al2O3 and CaO were performed between 1350 °C and 1600 °C. Reaction rate constants were determined based on scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) observations of reaction products and weight measurements of the Al2O3 reacted via dissolution of the CaO bearing phases from the specimens after the annealing period. The results showed that the formation of calcium aluminate phases proceeded rapidly at temperatures greater than 1405 °C when a liquid calcium aluminate was formed. In the lowest temperature range (1350 °C–1405 °C), when the formation of liquid phase ceased, the reaction rate was several orders of magnitude lower. Industrial trials including Ca-alloy injection into steel, sampling and SEM/EDS analyses, as well as an inclusion rating in the samples show the concept of rapid transformation of the alumina inclusions with Ca treatment.  相似文献   

11.
《钢铁冶炼》2013,40(6):427-435
Abstract

Industrial data were analysed to shed some light on the formation and growth of non-metallic inclusions during the ladle treatment of a particular grade of tool steel, Orvar Supreme (Fe-0·39C-1·0Si-0·4Mn- 5·2Cr-1·0Mo-0·9V). Seven types of inclusions were detected in samples taken along the processing evolution of the steel. The types of inclusions present were found to vary with the various stages of that evolution. While additions of aluminium to the steel bath were found to affect the composition of the inclusions, only a small number of pure alumina inclusions, agglomerated as clusters, were observed during the initial stages of deoxidation. Ladle glaze was found to be the major source of the inclusions. Most of those left in the steel before tapping were found to be of very small size and to contain high concentrations of Al2O3 and CaO and relatively minor ones of MgO and FeO.  相似文献   

12.
《钢铁冶炼》2013,40(1):20-25
Abstract

Three high basicity slags (A, B and C) were used in laboratory to refine Al killed steel to target high oxide cleanliness and low melting temperature inclusions. Inclusions were of CaO–MgO–Al2O3–SiO2 system after 90 min reaction, parts of which were MgO based. Total oxygen were in the range of 0·0007–0·0010 and 0·0005–0·0010% respectively when slag A (CaO/SiO2, 6–8; Al2O3, ~40%) and slag B (CaO/SiO2, 6–8; Al2O3, ~30%) were applied, with inclusions all in spherical shape and mainly <5 μm. Inclusion composition concentrated in or around the lower melting point region (<1500°C) under slag A, while it became more scattered under slag B. Total oxygen varied between 0·0008 and 0·0011% under slag C (CaO/SiO2, 3–4; Al2O3, about 20–25%). Many of the inclusions were in larger size, irregular morphology and located far away from the lower melting point region. Formation of MgO based inclusions closely related to solubility behaviour of MgO in the slag.  相似文献   

13.
Experimental study on the LF refining of aluminum killed cold heading steel shows that calcium content in the molten steel increased to about 0.0010% at the end of refining, and the aluminum deoxized products were transformed from Al2O3 to the complex inclusions CaO–MgO–Al2O3 with lower melting point by the high basicity, high Al2O3, and strong deoxidizing slag. The inclusions are in liquid state and can be easily floated up during LF refining and continuous casting. The total oxygen content of the steel falls to about 0.0020%. The experimental technology uses only 50 m calcium wire to the 80‐t heat or even without calcium treatment. As compared to the traditional technology with higher amount of calcium for treatment, which forms CaS and CaO–MgO–Al2O3 inclusions with high melting point, the experimental technology improves the castability and reduces the manufacturing cost.  相似文献   

14.
Inclusions in Al-killed steel with [S] of about 0.0060 to 0.0070 mass pct were characterized and discussed, evaluating the combined effects of basic slag refining and Ca treatment in ladle, together with reoxidation of liquid steel in casting tundish. Inclusions were changed from Al2O3 to MgO-Al2O3 spinel and then to MgO-Al2O3-CaO during basic slag refining. After Ca treatment, many (MgO-Al2O3)?+?CaS inclusions were formed, featuring the coexistence of MgO-Al2O3 and CaS to form a dual-phased structure. In the following Ar blowing, the number density of (MgO-Al2O3)?+?CaS inclusions and pure CaS increased obviously, which implied that [Ca] preferentially reacted with [S] rather than [O] in steel. Reoxidation in casting tundish caused the pickup of oxygen in steel, and the rise of total oxygen (T.O) was 0.0002 mass pct; even 55t steel has been poured. As a result, the content of CaO in inclusions increased and MgO-Al2O3-CaO inclusions were formed again. Thermodynamic calculations revealed that the driving force was strong for the formation of CaS-based inclusions. Higher carbon content in steel would help to reduce oxygen content while enhancing the activity of [S] in steel, which further stabilized the existence of CaS-based inclusions. Therefore, inclusions were mostly the solid (MgO-Al2O3)?+?CaS dual-phase ones, without the formation of liquid calcium aluminates. Contents of CaS and CaO in inclusions were affected by the [mass pct S]/[mass pct O] ratio, which was calculated as about 4.58 K and 5.34 K at 1873 K and 1823 K, respectively. This finding implied that lower oxygen was not favorable to prevent the solid inclusions in the calcium treatment of high carbon special steel.  相似文献   

15.
《钢铁冶炼》2013,40(10):732-737
Abstract

Dissolution of Al2O3 into molten CaO–Al2O3–CaF2, a base system of mould flux for continuous casting of high Al steel, has been investigated by employing a rotating cylinder method. The dissolution rate of an alumina rod into molten CaO–Al2O3–CaF2 flux increased with increase in rotating speed and temperature. The apparent activation energy for mass transport of flux C was calculated to be 255·6 kJ mol?1. The rate controlling step during the dissolution process of the alumina rod into molten CaO–Al2O3–CaF2 flux was found to be the diffusion of the solute in the flux boundary layer. The dissolution rate of alumina into molten CaO–Al2O3–CaF2 flux increased with increasing CaO/Al2O3, and it may be caused by the increase in thermodynamic driving force and the decrease in the viscosity of the flux. When the Al2O3 rod was immersed into molten flux, an intermediate compound of CaO.2Al2O3 formed firstly and then dissolved into molten flux.  相似文献   

16.
During the continuous casting of high‐Al steel, the dynamic reduction of silica‐based mould fluxes by the aluminium in the steel leads to changes in their composition and physical properties. The alumina‐based mould flux has been suggested as an alternative to alleviate this reduction problem. However, until now, the smooth running of high‐Al steel continuous casting has been impeded by the lack of systematic investigation of properties of this slag. In this paper, the effects of typical components on the properties of alumina‐based mould fluxes are discussed. The experimental results show that: (a) an increase in F? can reduce the viscosity while increasing the melting and break temperatures; (b) with increasing Li2O, the viscosity, melting temperature, and break temperature first decrease and then increase; (c) with the addition of BaO, the viscosity, melting temperature, and break temperature remain at a low level, while a further increase in BaO causes a decrease in viscosity, an increase in melting temperature, and the stabilization of the break temperature; (d) BaO is favorable to stabilize the properties of mould fluxes for the dissolution of additional Al2O3; (e) the crystalline phases of the mould fluxes mainly contain 12CaO · 7Al2O3 and 11CaO · 7Al2O3 · CaF2, and 12CaO · 7Al2O3 has great potential as a substitute for cuspidine.  相似文献   

17.
A plant trial of the production of 60Si2Mn–Cr spring steel using silicon–manganese combined with aluminium to deoxidise was performed, and the characteristics of inclusions during ladle furnace refining, calcium treatment and in billets were investigated by scanning electron microscope–energy dispersive spectroscopy and thermodynamic calculations. The formation mechanisms of oxide and CaS inclusions are discussed. The experimental observation and thermodynamic analysis showed that calcium treatment cannot entirely modify large-size MgO·Al2O3 spinel inclusions into homogeneous CaO–MgO–Al2O3 inclusions, but formed a liquid xCaO·yAl2O3 layer on its surface. When the Al content was 0.05 mass%, [Mg], [Ca] and [O] in molten steel could be controlled at 2.7~5 ppm, 2.5~8 ppm and 4.1~5.2 ppm, respectively, to achieve inclusions in the low melting point region. A large amount of CaS was generated in the present process due to a higher sulphur concentration in the molten steel and an excessive amount of Ca–Si wire. To avoid/reduce its formation, the sulphur concentration should be controlled to below 70 ppm.  相似文献   

18.
《钢铁冶炼》2013,40(8):625-629
Abstract

As a common component in metallurgical slag, CaO plays an important role in desulphurisation, dephosphorisation and absorption of non-metallic inclusions. In order to better understand the mechanism of the slag/metal reactions, the diffusion dynamics of calcium ions in CaO–Al2O3–SiO2 slags were studied. It was found that there was almost a linear relation between the logarithms of pre-exponential factor and diffusion activation energy. By combining the relation between the diffusion activation energy and the optical basicity corrected in the CaO–Al2O3–SiO2 slags, a simple model used to estimate the diffusion coefficient of calcium ion is proposed. The estimated values of the CaO–SiO2 and CaO–Al2O3–SiO2 systems agree well with the experiment data, with a mean deviation of 35·3 and 22·5% respectively.  相似文献   

19.
The slag composition plays a critical role in the formation of inclusions and the cleanliness of steel. In this study, the effects of FeO content and the C/A (CaO/Al2O3) ratio in the slag on the formation of inclusions were investigated based on a 10-minute slag–steel reaction in a MgO crucible. The FeO content in the top slag was shown to have a significant effect on the formation of MgO·Al2O3 spinel inclusions, and critical content exists; when the initial FeO content in the slag was less than 2 pct, MgO·Al2O3 spinel inclusions formed, and the T.O (total oxygen) was 20 ppm; when the initial FeO content in the slag was more than 4 pct, only Al2O3 inclusions were observed and the T.O was 50 ppm. It was clarified that the main source of Mg for the MgO·Al2O3 spinel inclusion formation was the top slag rather than the MgO crucible. In addition, the cleanliness of the steel increased as the initial FeO content in the top slag decreased. As regards the effects of the C/A ratio, the MgO amount in the observed inclusions gradually increased, whereas the T.O content decreased gradually with the increasing C/A ratio. Slag with a composition close to the CaO-saturated region had the best effect on the inclusion absorption.  相似文献   

20.
The current study performed thermadynamic calculation, laboratory experiments, and industrial trials for the formation and modification of MgO-Al2O3 spinel inclusions in alloy steels. The stability Mg-Al-O diagram was obtained using the thermodymanic study. The resulting MgO-Al2O3-CaO inclusions from MgO-Al2O3 spinel inclusions after the calcium treatment were spherical, and?>?5???m MgO-Al2O3-CaO inclusions have a two-layer structure: an outside CaO-Al2O3 layer and a MgO-Al2O3 core. The modification of?>?5???m MgO·Al2O3 spinel inclusions by calcium treatment includes two steps: (1) reducing MgO in the inclusion into the dissolved magnesium by the dissolved calcium in the steel and (2) generating a liquid xCaO·yAl2O3 layer at the outside of the spinel inclusion. For <2???m MgO·Al2O3 spinel inclusions, they can possibly be modified into a xCaO·yAl2O3 inclusion by reducing all MgO component in the spinel inclusions with the added calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号