首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tensile behavior of blends of linear polyethylene (PE) and isotactic polypropylene (PP) was examined in relation to their morphology. Yield stress increases monotonically with increasing PP content, while true ultimate strength is much lower in all blends than in the pure polymers as a result of early fracture. The blends fail at low elongation because of their two-phase structure, consisting of interpenetrating networks or of islands of PE in a PP matrix, as shown by scanning electron microscopy of fracture surfaces and transmission electron microscopy of thin films. While spherulites in PP are very large (~100 μm in diameter), addition of 10% or more of PE drastically reduces their average size. This, together with the profusion of intercrystalline links introduced by PE, may be associated with maximization of tensile modulus in blends containing ~80% PP. Introduction of special nucleating agents to PP reduces average spherulite size and is accompanied by slight improvements in modulus. Thin films of blends strained in the electron microscope neck and fibrillate in their PE regions, but fracture cleanly with little fibrillation in areas of PP.  相似文献   

2.
Morphology features and effects of particle size and composition of the disperse phase on the impact properties have been studied for the blends of isotactic polypropylene (PP)/ethylene-propylene-diene terpolymer and (EPDM)/linear low-density polyethylene (LLDPE). The blend components were mixed in a twin-screw extruder, press molded, and analyzed by scanning electron microscopy, SEM (fractured and toluene etched samples), and by transmission electron microscopy, TEM (RuO4 stained samples). TEM was most effective for the identification of component distribution and particle size measurement. An increasing degree of LLDPE and EPDM interpenetration was observed with the PE content. Not one case of a neat component separation was detected. LLDPE addition improves the EPDM dispersability, affecting mainly the larger particles. The impact properties at room temperature were especially dependent on the rubber content, whereas at low temperature the particle diameter appears to be the controlling parameter. The affect of LLDPE on blend toughness is more evident in the latter case.  相似文献   

3.
The objective of this work was to investigate the compatibilization of a blend of linear low density polyethylene with polypropylene by Injection of a free radical initiator during extrusion. The reactive extrusion process utilized a single screw extruder equipped with two static mixers. The initiator was injected into the extruder feedport and temperature programming used to cause most reaction to occur within the static mixers. Although elongation at yield was increased by 37 percent, impact strength and yield strength decreased by 17 and 54 percent, respectively. Scanning electron microscopy showed that the maximum size of the dispersed phase decreased from a maximum size of four microns to less than two microns upon addition of initiator. Size exclusion chromatography (SEC), temperature rising elution chromatography (TREF), and differential scanning calorimetry showed that the polypropylene in the blend was degrading while the polyethylene was increasing in molecular size. The combination of SEC and TREF was particularly useful in elucidating this result. No copolymer was discerned by any of the methods used.  相似文献   

4.
B.C. Poon  A. Hiltner  E. Baer 《Polymer》2004,45(3):893-903
The effect of chain microstructure on adhesion of ethylene copolymers to polypropylene (PP) was studied using coextruded microlayers. Adhesion was measured by delamination toughness G using the T-peel test, and interfacial morphology was examined by atomic force microscopy. Good adhesion to PP was achieved with homogeneous metallocene catalyzed copolymers (mPE) with density 0.90 g cm−3 or less. Good adhesion was attributed to entanglement bridges. In contrast, a heterogeneous Ziegler-Natta catalyzed copolymer (ZNPE) of density 0.925 g cm−3 exhibited poor adhesion to PP due to an amorphous interfacial layer of low molecular weight, highly branched fractions that prevented effective interaction of ZNPE bulk chains with PP. Blending mPE with ZNPE eliminated the amorphous interfacial layer and resulted in epitaxial crystallization of ZNPE bulk chains with some increase in G. Increasing the mPE content of the blend past the amount required to completely resolve the amorphous interfacial layer of ZNPE resulted in a steady, almost linear, increase in G. Phase separation of mPE and ZNPE during crystallization produced an interface with regions of epitaxially crystallized ZNPE bulk chains and other regions of entangled mPE chains. Entanglement bridges imparted much better adhesion than did epitaxially crystallized lamellae.  相似文献   

5.
6.
Two types of ultralow density polyethylene (ULDPE) of different melt viscosities were blended with a polypropylene (PP) in a twin screw extruder. Morphology, thermal, rheological, and mechanical properties of the blends were determined. Morphological observation from SEM showed a clean phase separation of PP/ULDPE blends. However, depending on the viscosity ratio, a significant difference in the extent of phase separation, as well as in the phase inversion composition, was demonstrated. The melting temperature of PP and ULDPE were respectively increased and decreased in the blend. Crystallization rate and the, crystallinity of PP and ULDPE were first increased and then decreased as the other component was increased. Yield at low frequencies was observed with 30 wt% ULDPE in PP. In ULDPE-rich compositions, complex viscosities of the blends gave negative deviation from the additive rule of mixing. Mechanical properties such as flexural modulus, elongation at break and Vicat softening point were closely relatable to the morphology. The impact strength of PP is significantly improved by ULDPE addition.  相似文献   

7.
A series of undrawn and drawn tapes has been prepared from HDPE, as well as, blends consisting of 90% HDPE and 10% ethylene copolymers. The influence of both the molecular irregularity of ethylene copolymers and resultant crystallization behavior on structure and mechanical properties of these blends has been investigated using differential scanning calorimetry, wide-and small-angle X-ray diffraction, mechanical response at small and large strains, and dynamic mechanical thermal analysis. The tensile drawing study of un-drawn tapes shows enhanced strain hardening and a consistent reduction in natural, as well as, maximum achievable draw ratio with an increase in molecular irregularity of ethylene copolymers. It has been confirmed that blends are partially miscible in the amorphous, as well as, in the crystalline phase through cocrystallization. The lateral crystallite thicknesses, crystallinity, and amorphous phase orientation of blends consistently decreases with an increase in molecular irregularity of ethylene copolymers because of a large-scale change in crystallization and drawing behavior of HDPE component in the blends. There is a distinct possibility that the molecular network exerts an important influence on physical and mechanical properties of undrawn and drawn tapes. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The reactive compatibilization of polypropylene/polyethylene terephthalate (PP/PET) blends by addition of glycidyl methacrylate grafted PP (PP-g-GMA) was studied. Two PP-g-GMA copolymers, containing either 0.2 or 1.2 wt% of GMA, were used as interface modifiers. These were incorporated into PP blends (with either 70 or 90 wt% PET), replacing 1/5 of PP in the system. The use of these modifiers changed the blends' tensile mechanical behavior from fragile to ductile. Blend tensile strength was improved by 10% and elongation at break showed 10 to 20-fold increases while stiffness remained constant. Scanning electron micrographs showed the PP average domain size in injection molded specimens to decrease to the micron/sub-micron size upon addition of the GMA modified resins, while the unmodified blends exhibited heterogeneous morphology comprising large lamellae 10–20 μm wide. The low-GMA graft content PP seemed slightly more efficient than the high GMA content PP in emulsifiying PP/PET blends. The GMA grafting level on PP had very limited effects on the blends' mechanical behavior in the range of GMA graft density provided by the two modified resins investigated.  相似文献   

9.
The dynamic mechanical behavior of ternary blends of isotactic polypropylene (80–0 percent)/EPDM rubber (20 percent)/high-density polyethylene (0–80 percent) was investigated in the temperature range from −196 to 100°C by means of a free-oscillating torsional pendulum. The structure of the blends was examined by a scanning electron microscope on etched surfaces cut by a fractured glass edge in liquid nitrogen. Dynamic mechanical response spectra and microphotographs of the systems studied show that the minor thermoplastic forms the core of EPDM rubber inclusions. At 20 percent rubber in the blends, the inclusions can accommodate from 20 to 30 percent polyethylene or polypropylene. Addition of either thermoplastic not exceeding this limit has almost the same effect on the stiffness, damping, and yield stress of the blends as the addition of the same amount of rubber. Ternary blends with equal or slightly different polypropylene and polyethylene fractions have the structure of interpenetrating phases in which EPDM rubber forms the interface layer.  相似文献   

10.
Moldability and mechanical properties of polyethylene terephthalate (PET) under normal molding conditions were found to improve significantly when it was blended with bisphenol-A-polycarbonate (PC) and polypropylene (PP) to form ternary polymer blend systems. DSC results of these blends revealed that the PET and PC components formed a miscible blend while PP being incompatible with them, formed a separate phase. PP was also found to form a sleeve around the PET-PC miscible phase and, thereby, showed a skin-core type of morphology. Variations of mechanical properties with varying amounts of PP was measured keeping the ratio of PET and PC constant. Tensile and flexural properties of the blends decrease with the amount of PP. Notched impact strength increases up to a certain level of PP and then decreases, while the unnotched values decrease gradually. The effect of annealing on the mechanical properties of these blends have been discussed on the basis of the increased crystallinity of some of the components.  相似文献   

11.
用示差扫描量热仪(DSC)对氯化聚乙烯橡胶(CM)改性聚丙烯(PP)的非等温结晶行为进行了研究。结果表明,随着降温速度上升,样品结晶温度下降,结晶速度上升。在以15k/min与20k/min速度降温时,发现两者的结晶行为相一致。采用TCHC交联剂的1#样品的结晶温度与速度都大于采用DCP交联剂的2#样品,前者的硫化效率低,对结晶影响小。本文又通过求解非等温结晶动力学参数与结晶活化能,进一步解释了1#与2#样品的结晶行为。  相似文献   

12.
Binary and ternary blends were prepared from low, medium, and high density polyethylene. The tensile properties of these materials indicated that the blends formed either compatible or semi-compatible mixtures. One of the ternary blends exhibited a slight synergism in properties which could be partially attributed to an enhancement in crystallinity. Such blends may have practical utility by yielding materials having a combination of strength, stiffness, and toughness.  相似文献   

13.
A morphological study of polypropylene/ethylene-propylene-diene terpolymer (PP/EPDM) and polypropylene (PP)/polyolefin thermoplastic rubber blends was conducted. Dispersion of the impact modifier in the blend was investigated by transmission and scanning electron microscopy (TEM and SEM). It was established that number-average particle size (D?n) of the EPDM impact modifier increased with its melt viscosity. The differences in melt viscosities of the blended components were characterized by the phase viscosity ratio (μ). The course of D?n vs. log μ function was qualitatively in agreement with the Rayleigh—Taylor—Tomotika theory. Accordingly, high degree of dispersion of the impact modifier can be achieved if melt viscosities of the blended components are very closely matched, i.e. if μ ? 1. It was concluded from SEM results that, below an impact modifier content of 20%, the modifier formed the dispersed phase in the continuous PP matrix. In blends containing 50% of impact modifier, the latter may also form continuous phase depending on its type and μ value beside the still continuous PP phase (co-continuous network structure).  相似文献   

14.
The effect of addition of an ethylene-propylene block polymer on rheological and mechanical properties of a linear-low-density polyethylene/polypropylene blend was examined. The samples were prepared by melt blending in a twin-screw extruder followed by injection molding. The single-, two- and three-component systems were treated the same way. The mechanical behavior of the blends was evaluated by means of tensile, and flexural, tests at 23 and ?40°C. The capillary, elongational, and dynamic-flow measurements were performed at 190°C.  相似文献   

15.
A Gałeski  Z Bartczak  M Pracella 《Polymer》1984,25(9):1323-1326
Primary nucleation of spherulites in blends of isotactic polypropylene (iPP) with low density polyethylene (LDPE) was investigated by means of differential scanning calorimetry and optical microscopy. The number of iPP spherulites in the blend decreases with increasing LDPE concentration to a much greater extent than follows from the decreasing amount of iPP. The shapes of spherulite size distributions indicate that athermal (heterogeneous) primary nucleation is inhibited. The density of primary nucleation in the blends decreases strongly with increasing mixing time. The same effect was observed in the blends with the nucleating agent which was added to iPP or LDPE. These experiments demonstrate that heterogenoeus nuclei migrate across interphase boundaries from the iPP melt to the LDPE melt during the mixing process. It is suggested that the interfacial energy difference between the nuclei and the molten components of the blend is responsible for the migration of nuclei.  相似文献   

16.
17.
The dynamic mechanical properties of both homopolypropylene (PPVC)/Maleated Poly-propylene (PP-g-MA) and ethylene-propylene block copolymer (PPSC)/Maleated Poly-propylene (PP-g-MA) blends have been studied by using a dynamic mechanical thermal analyzer (PL-DMTA MKII) over a wide temperature range, covering a frequency zone from 0.3 to 30 Hz. With increasing content of PP-g-MA, α relaxation of both blends gradually shift to a lower temperature and the apparent activation energy ΔEα increases. In PPVC/PP-g-MA blends, β relaxation shifts to a higher temperature as the content of PP-g-MA increases from 0 to 20 wt % and then change unobviously for further varying content of PP-g-MA from 20 to 35 wt %. On the contrary, in the PPSC/PP-g-MA blends β1 relaxation, the apparent activation energy ΔEβ1 and β2 relaxation are almost unchanged with blend composition, while ΔEβ2 increases with an increase of PP-g-MA content. In the composition range studied, storage modulus É value for PPSC/PP-g-MA blends decreases progressively between β2 and α relaxation with increasing temperature, but in the region the increment for PPVC/PP-g-MA blends is independent of temperature. The flexural properties of PPVC/PP-g-MA blend show more obvious improvement on PP than one of PPSC/PP-g-MA blends. Scanning electron micrographs of fracture surfaces of the blends clearly demonstrate two-phase morphology, viz. the discrete particles homogeneously disperse in the continous phase, the main difference in the morphology between both blends is that the interaction between the particles and the continuous phase is stronger for for PPVC/PP-g-MA than for PPSC/PP-g-MA blend. By the correlation of the morphology with dynamic and mechanical properties of the blends, the variation of the relaxation behavior and mechanical properties with the componenet structure, blend composition, vibration frequency, and as well as the features observed in these variation are reasonably interpreted. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The dependences of phase structure and notch impact strength on conditions of mixing have been compared for the binary blend PP/EPDM and for two ternary blends PP/EPDM/PE possessing different viscosities of polyethylene. At low rates and short times of mixing a phase structure with pronounced inhomogeneities (particles of the dispersed phase having diameters of tens μm) is formed in all blends. Conditions of mixing needed for the formation of a homogeneous phase structure (with particles having diameters of several μm) depend on the average viscosity of the components forming the inclusions (EPDM elastomer or EPDM elastomer/polyethylene). Depending on the conditions of mixing and on the rheological properties of components, substitution of one part of the EPDM elastomer with PE may lead to an increase or decrease in the impact strength of the final blend.  相似文献   

19.
《Polymer》2002,43(19):5187-5195
Compositional domain structure of blends of isotactic polypropylene with linear polyethylene and chain orientation of neat polymers and of the blends were assessed by micro-Raman confocal imaging spectroscopy and FT Raman spectroscopy. The results were correlated with polarised photoacoustic FTIR and with DSC. The surface and inner parts of compression-moulded, injection-moulded and drawn specimens were compared. Polymer domains in the blends and domains of different orientation were identified. The larger size of the polymer domains and lower chain orientation in the core of the specimens prepared by injection-moulding were explained by different cooling conditions of the melt. Possibilities and limitations of the micro-Raman confocal spectroscopy method were discussed.  相似文献   

20.
Polypropylene (PP) compositions containing CaCO3 filler, EPDM (ethylene-propylene-ethylidenenorbornene) elastomer, and a non-reactive surfactant were investigated in the mixing chamber of a plastograph. Rheological properties were determined from the registered torque (M) vs. time and temperature (T) vs. time curves, while tensile characteristics of the blends were measured on compression molded plates. The homogenization process can be followed with the aid of 1 n M vs. 1/T diagrams. In the first few minutes of the mixing, beside homogenization, a significant breaking down of the elastomer takes place, and the size of the particles attains an equilibrium value. Dispersion time increases with increasing amount of EPDM and surface active-agent. Morphological investigations indicate the presence of a continuous PP phase containing dispersed CaCO3 and elastomer particles. The rheological and tensile characteristics are seemingly determined by the total amount of additives, which imply that the elastomer and the filler has the same effect on the properties of the composite. Separation of the effects proved, however, that the effect of the two components are dissimilar, the filler exerts a larger influence on the investigated properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号