首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallization and melting behavior of isotactic polypropylene (iPP) and polypropylene copolymer (co‐PP) containing silicon dioxide (SiO2) were investigated by differential scanning calorimeter (DSC). SiO2 had a heterogenous nucleating effect on iPP, leading to a moderate increase in the crystallization temperature and a decrease in the half crystallization time. However, SiO2 decreased the crystallization temperature and prolonged the half crystallization time of co‐PP. A modified Avrami theory was successfully used to well describe the early stages of nonisothermal crystallization of iPP, co‐PP, and their composites. SiO2 exhibited high nucleation activity for iPP, but showed little nucleation activity for co‐PP and even restrained nucleation. The iPP/SiO2 composite had higher activation energy of crystal growth than iPP, indicating the difficulty of crystal growth of the composite. The co‐PP/SiO2 composite had lower activation energy than co‐PP, indicating the ease of crystal growth of the composite. Crystallization rates of iPP, co‐PP, and their composites depended on the nucleation. Because of its high rate of nucleation, the iPP/SiO2 composite had higher crystallization rate than iPP. Because of its low rate of nucleation, the co‐PP/SiO2 composite had lower crystallization rate than co‐PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1889–1898, 2006  相似文献   

2.
The effect of propylene–ethylene copolymers (PEc) with different ethylene‐unit contents on melting and crystallization behaviors of isotactic‐polypropylene (iPP) were investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results show that the addition of PEc decreases significantly crystallization temperature (Tc) of iPP, but slightly affects melting temperature (Tm). With increasing the ethylene‐unit content of the propylene–ethylene copolymers, the decrease in crystallization temperature of iPP is smaller. The PLM results show that the spherulite growth rate decreases with increasing crystallization temperature for iPP and iPP/PEc blends. The higher the ethylene‐unit content of the copolymers is, the lower the spherulite growth rate (G) of iPP/PEc blends is. The influence of the PEc on nucleation rate constant (Kg) and fold surface energy (σe) of iPP was examined by nucleation theory of Hoffman and Lauritzen. The results show that both Kg and σe of iPP/PE20(80/20) and iPP/PE23(80/20) blends are higher than those of iPP, demonstrating that the overall crystallization rate of iPP/PEc blends decreased as compared to that of iPP, resulting from the decrease of the nucleation rate and the spherulite growth rate of iPP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
The phase behavior and the crystallization kinetics of blends composed of isotactic polypropylene (iPP) and linear low‐density polyethylene (LLDPE) were investigated by differential scanning calorimetry. The phase behavior indicates the formation of separate crystals of iPP and LLDPE at each investigated blend composition. The crystallization trace reveals that iPP crystallizes in its normal range of temperatures (i.e., at temperatures higher than that of LLDPE), when its content in the blend is higher than 25% by weight. In the blend whose iPP content is as high as 25%, at least a portion of iPP crystallizes at temperatures lower than that of LLDPE. This behavior has been proposed by Bassett to be attributed to a change in the kind of nucleation from heterogeneous to homogeneous. From the Avrami analysis of the isothermal crystallization of iPP in the presence of molten LLDPE, n values close to 2 are always obtained. According to our previously proposed interpretation of the Avrami coefficient, it can be related to the crystallite fractal dimension, through d = n + 1, which gives values close to 3, according to the spherulitic observed morphology. The kinetics parameter, i.e., the half‐time of crystallization, and the kinetic constant k show that a decrease in the overall rate of crystallization of iPP occurs on blending. Optical microscopy photographs, taken during the cooling of the samples from the melt, confirm the above results and show increasingly less resolved spherulite texture on increasing LLDPE content in the blend. The diffusion parameters evaluated for the neat polymers and for the blends in dichloromethane, which give information on the miscibility in the amorphous state, show that the diffusional behavior of the blends is governed by iPP, suggesting a two‐phase amorphous state. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3338–3346, 2003  相似文献   

4.
Linear low density polyethylene/isotactic polypropylene (LLDPE/iPP) blends, with oriented microfibrils of iPP dispersed in the nearly isotropic LLDPE matrix, has been prepared via melt extrusion drawing and subsequent thermal treatment at 160°C to melt LLDPE matrix. The presence of oriented microfibrils of iPP in the LLDPE/iPP blends not only promotes the homogenous deformation, with no drop of nominal stress around yield point, but also enhances the fracture toughness significantly. The specific Essential Work of Fracture we, which is a pure crack resistance parameter per ligament area unit, is 24.7 and 33.6 N/mm for the blends with 15 and 30 wt % microfibrils of iPP, respectively. Moreover, with the deduced deformation parameters, such as true yield stress and strain hardening modulus, the relationship between deformation parameters and fracture toughness is explored. It is demonstrated that the fracture toughness can be well correlated with the ratio of true yield stress to strain hardening modulus σty/G, and either a decrease in yield stress or an increase in strain hardening can improve fracture toughness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1291–1298, 2007  相似文献   

5.
Using differential scanning calorimetry (DSC) technique, a comparative study has been made of the isothermal and nonisothermal crystallization kinetics of nonnucleated isotactic polypropylene (iPP) and of nucleated iPP with 0.5 wt% of single-walled carbon nanotubes (SWCNTs) as a nucleating agent. The Avrami exponents (n) of iPP and nucleated iPP are close to 3.0 for isothermal crystallization. These results indicate that the addition of nucleating agents did not change the crystallization growth patterns of the neat polymer and that crystal growth was heterogeneous three-dimensional spherulitic. The results show that the addition of SWCNTs can shorten the crystallization half-time (t 1/2) and increase the crystallization rate of iPP. In the nonisothermal crystallization process, the Ozawa model failed to describe the crystallization behavior of nucleated iPP. The Cazé–Chuah model successfully described the nonisothermal crystallization process of iPP and its nanocomposite. A kinetic treatment based on the Ziabicki theory is presented to describe the kinetic crystallizability, in order to characterize the nonisothermal crystallization kinetics of iPP and nucleated iPP. Polarized light microscopy (PLM) experiments reveal that SWCNTs served as nucleating sites, resulting in a decrease of the spherulite size.  相似文献   

6.
Noncrosslinking linear low‐density polyethylene‐grafted acrylic acid (LLDPE‐g‐AA) was prepared by melt‐reactive extrusion in our laboratory. The thermal behavior of LLDPE‐g‐AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low‐density polyethylene (LLDPE), melting temperature (Tm) of LLDPE‐g‐AA increased a little, the crystallization temperature (Tc) increased about 4°C, and the melting enthalpy (ΔHm) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE‐g‐AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE‐g‐AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE‐g‐AA samples were lower than that of LLDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2626–2630, 2002  相似文献   

7.
The nucleation ability of isotactic poly(propylene) (iPP) to ammonium 2,2′‐methylene‐bis‐(4,6‐di‐t‐butylphenylene) phosphate (An) was investigated in the present work comparing with sodium 2,2′‐methylene‐bis‐(4,6‐di‐t‐butylphenylene) phosphate (NA‐11). Scanning electron microscope (SEM) revealed the crystalline morphology of both An and NA‐11 with planar surface characteristics. The observation of the fracture surface of nucleation iPP samples by SEM showed An particles were dispersed uniformly in polymer and had a better compatibility with iPP matrix than NA‐11 particles. Differential scanning calorimeter (DSC) showed that the melting temperature of An was 262°C significantly lower than that measured from NA‐11 group (above 400°C). Crystallization behaviors of iPP/NA‐11 and iPP/An were also investigated by DSC analysis, respectively. The results showed the crystallization peak temperature and the crystallinity of iPP/An were almost near to that of iPP/NA‐11. Furthermore, mechanical and optical properties of iPP were strongly improved in the presences of An and NA‐11. The flexural strength of iPP was elevated 34 and 35% and the haze value was reduced from 40.4 to 15.1 and 14.9% by the addition of 0.15 wt% NA‐11 and An, respectively. These results demonstrate that the nucleating agent of An described here is a good nucleating agent for the crystallization of iPP as well as NA‐11. POLYM. ENG. SCI., 55: 22–28, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
A highly active novel β-nucleating agent for isotactic polypropylene   总被引:3,自引:0,他引:3  
Shicheng Zhao  Zhong Xin 《Polymer》2008,49(11):2745-2754
A highly active novel β-nucleating agent for isotactic polypropylene (iPP), cadmium bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (BCHE30), was found and its effects on the mechanical properties, the content of β-crystal, and crystallization behavior of iPP were investigated, respectively. The results show that the impact strength and crystallization peak temperature of nucleated iPP are greatly increased, while the spherulite size of nucleated iPP is dramatically decreased than that of pure iPP. The content of β-form of nucleated iPP (kβ value) can reach 87% with 0.1 wt% BCHE30. The Caze method was used to study the non-isothermal crystallization kinetics of nucleated iPP and the crystallization active energy was achieved by Kissinger method.  相似文献   

9.
In this work, the melt crystallization of immiscible blends of isotactic polypropylene (iPP) and branched polyethylenes (PE) was followed by oscillatory shear measurements during controlled cooling. All the blends contained 20% iPP finely dispersed in several ethylene/α-olefin copolymer matrices (with and without a nucleating agent) with densities ranging from 0.88 to 0.92 g/cm3 (linear low, very low, and ultra low density polyethylenes: LLDPE, VLDPE, and ULDPE). The rheological results were compared with parallel differential scanning calorimetry (DSC) measurements at the same cooling rate. During preliminary evaluations of the neat resins, no effect was found of the variation of the frequency of oscillation or the applied shear strain on their crystallization (at least in the range explored in this work). In the case of the blends, when the iPP crystallized in a fractionated fashion, only one sudden increase in the storage modulus (G′) was observed during cooling due to the partial coincident crystallization of both iPP and the PE matrix. In the presence of a nucleating agent, an almost complete separation between the crystallization of both components in the blend was achieved and two increases in G′ were clearly observed upon cooling. A close match between the dynamic crystallization kinetics obtained by DSC and torsion rheometry was demonstrated by a direct comparison between calorimetrically measured solid conversion and G′ during cooling from the melt. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2481–2493, 1997  相似文献   

10.
The nonisothermal crystallization behavior of linear low-density polyethylene (LLDPE)/glass fiber (GF) composite was investigated by differential scanning calorimetry (DSC). It was observed that the crystallization temperature peak (Tp) of LLDPE composite containing 5.0 wt % GF (LLDPE/GF5) was higher than that of the pure LLDPE at various cooling rates. The half-time of crystallization (t1/2) of LLDPE/GF5 composite was shortened under the effect of GF. The nonisothermal crystallization kinetics of LLDPE and LLDPE/GF5 composite were analyzed through the Avrami, Ozawa, and Mo equations. The results indicated that the data of the nonisothermal crystallization for LLDPE and LLDPE/GF5 composite calculated based on the Ozawa equation did not have the good linear relationship, but the nonisothermal crystallization behaviors of LLDPE and LLDPE/GF5 composite could be successfully described by the modified Avrami and Mo methods. The crystallization rate Zc of the modified Avrami parameter of LLDPE/GF5 composite was higher than that of pure LLDPE at the same cooling rate. The Mo parameter F(T) of LLDPE/GF5 composite was lower than that of LLDPE at the same degree of crystallinity. Through the Kissinger equation, the activation energies Ed of LLDPE and LLDPE/GF5 composite were evaluated, and their values were 312.3 and 251.2 kJ/mol, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Donghua Xu 《Polymer》2008,49(1):330-338
The composites (iPP/CNTs) made of isotactic polypropylene (iPP) and multi-wall carbon nanotubes (CNTs) were prepared by solution blending. To improve compatibility between CNTs and iPP and to enhance dispersion of CNTs in iPP matrix, CNTs were chemically modified by grafting alkyl chains. The chemically modified CNTs had about 6 wt% grafted alkyl chains. Rheological measurements indicated that CNTs caused gelation in iPP/CNTs due to CNT network formation and the critical gelation CNT concentration was about 7.4 wt%, which was considered to be high due to the low CNT aspect ratio in this study. Crystallization behaviors of iPP/CNTs were studied by using optical microscopy (OM) and differential scanning calorimetry (DSC). Radial growth rates of spherulites during isothermal crystallization of iPP/CNTs with CNT concentrations less than 2.0 wt% measured by using OM showed decreasing trends with increasing CNT concentration. Avrami analysis of the exothermic heat flow curves during isothermal crystallization of iPP/CNTs measured by DSC indicated that crystallization rates were accelerated when CNT concentrations were lower than the critical gelation concentration, because CNTs mainly functioned as nucleating agents for crystallization, while crystallization rates did not change obviously when CNT concentrations were higher than the critical gelation concentration, because CNT network could form and mainly functioned to provide restriction to mobility and diffusion of iPP chains to crystal growth fronts.  相似文献   

12.
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355.  相似文献   

13.
Copolymers of linear low‐density polyethylene (LLDPE) grafted with two novel nonionic surfactants, acrylic glycerol monostearate ester (AGMS) and acrylic polyoxyethylenesorbitan monooleate ester (ATWEEN80), containing hydrophilic and hydrophobic groups and 1‐olefin double bond were prepared by using a plasticorder at 190°C. To evaluate the grafting degree, two different approaches based on 1H‐NMR data were proposed, and FTIR calibration was showed to validate these methods. The rheological response of the molten polymers, determined under dynamic shear flow at small‐amplitude oscillations, indicated that crosslinking formation of the chains could be decreased with increasing the monomer concentration. Their thermal behavior was studied by DSC and polarization microscope (PLM): The crystallization temperature (TC) of grafted LLDPE shifted to higher temperature compared with neat LLDPE because the grafted chains acted as nucleating agents. Water and glycerol were used to calculate the surface free energy of grafted LLDPE films. The results indicated that the novel polyoxyethylene surfactant ATWEEN80 could greatly improve the hydrophilicity of LLDPE and the surface free energy varied from 33 mN/m of neat LLDPE to 106 mN/m of the grafted LLDPE film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The thermal properties of isotactic polypropylene (iPP) reinforced with polyaniline‐grafted‐short glass fibers (PAn‐g‐SGF) at 10, 20, and 30 wt% concentration and iPP blended with 5 wt% PP‐grafted‐maleic anhydride (PP‐gMA) and 30 wt% of PAn‐g‐SGF were investigated. iPP crystallizes into a spherulitic morphology, the microfiller promoted larger spherulite size and higher dynamic modulus, but the overall degree of crystallinity decreased as the concentration of PAn‐g‐SGF increased. The melting temperature, Tm, was not influenced by the microfiller. However, the crystallization temperature, Tc, as determined by DMA, first decreased reaching a minimum at ca. 20 wt%, and then increased, in contrast with Tc determined by DSC, it increased as concentration increased. The initial reduction in Tc observed by DMA seems to be associated with the crystallites growing from the microfiller into the matrix, the overall molecular dynamics then being less affected. On the other hand, increase in Tc above 20 wt% concentration suggests that the percolation threshold could be responsible for these results. Addition of the maleic anhydride copolymer produced higher shear modulus, transition temperatures, and activation energy, suggesting higher interaction between microfiller and polymer matrix. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

15.
The crystallization kinetics of isotactic polypropylene (iPP) and nucleated iPP with substituted aromatic heterocyclic phosphate salts were investigated by means of a differential scanning calorimeter under isothermal and nonisothermal conditions. During isothermal crystallization, Avrami equation was used to describe the crystallization kinetics. Moreover, kinetics parameters such as the Avrami exponent n, crystallization rate constant Zt, and crystallization half‐time t1/2 were compared. The results showed that a remarkable decrease in t1/2 as well as a significant increase in overall crystallization rate was observed in the presence of monovalent salts of substituted aromatic heterocyclic phosphate, while bivalent and trivalent salts have little effect on crystallization rate of iPP. The addition of monovalent metal salts could decrease the interfacial free energy per unit area perpendicular to PP chains σe value of iPP so that the nucleation rate of iPP was increased. During nonisothermal crystallization, Caze method was used to analyze the crystallization kinetics. It also showed that monovalent metal salts had better nucleation effects than bivalent and trivalent metal salts. From the obtained Avrami exponents of iPP and nucleated iPP it could be concluded that the addition of different nucleating agents changed the crystal growth pattern of iPP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3307–3316, 2006  相似文献   

16.
采用偏光显微镜(POM)及示差扫描量热(DSC)法考察了3种α/β复合成核剂NA40/NABW、NA40/HHPA-Ba、NA40/PA-03对成核等规聚丙烯(iPP)的结晶形态及非等温结晶动力学的影响。对成核iPP结晶形态的研究结果表明:α/β复合成核剂的加入能够减小iPP的球晶尺寸。影响α/β复合成核剂成核iPP结晶形态的主要因素是ΔTCp(ΔTCp为成核iPP结晶峰值温度与iPP结晶峰值温度的差值),即复合体系中ΔTCp较大的成核剂在iPP结晶过程中起主导作用,最终的结晶形态与单独添加这一成核剂时iPP的结晶形态相类似;当两种成核剂的ΔTCp接近相同时,两者竞争成核,成核iPP的结晶形态表现为两种成核剂共同作用的结果。因此,通过改变α/β复合成核剂的复合比例即改变两种成核剂的添加浓度,进而改变其ΔTCp,可以得到结晶形态完全不同的iPP。采用Caze法对非等温动力学进行了研究,结果表明:添加α/β复合成核剂能够提高iPP的结晶温度,缩短半结晶时间。复合成核剂成核iPP的结晶行为也同样受成核剂ΔTCp的影响,复合成核iPP的Avrami指数接近于复合体系中ΔTCp较大的成核剂单独添加时iPP的Avrami指数。  相似文献   

17.
A new compound was synthesized by chemical combination of (3‐mercapto)propyl‐heptaisobutyl polyhedral oligomeric silsesquioxane (POSS‐SH) and 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) via epichlorohydrin while hydroxyl groups were still retained in the product POSS‐DMDBS. The prepared POSS‐DMDBS was introduced into isotactic polypropylene (iPP) to improve crystallization behaviors of iPP and obtain nanocomposites with suitable mechanical properties. Crystallization and mechanical properties of iPP/POSS‐DMDBS were systematically investigated by wide‐angle X‐ray diffraction, polarization microscopy, atomic force microscopy, differential scanning calorimetry, and tensile tests. The spherulite size of the modified iPP was obviously decreased with the addition of POSS‐DMDBS, while the crystallization temperature was increased by 5°C to 9°C depending on the content of POSS‐DMDBS incorporated. POSS‐DMDBS exhibited relatively higher nucleating efficiency on iPP which is similar to that of DMDBS, confirmed by the increased crystallization temperature. It was also found that the tensile modulus of iPP after adding POSS‐DMDBS increased significantly with respect to pristine iPP, but the elongation values decreased. Introduction of POSS‐DMDBS in content less than 1 wt% could bring about effective influence on the crystallization behaviors of iPP, demonstrating its potential applications . POLYM. ENG. SCI., 57:357–364, 2017. © 2016 Society of Plastics Engineers  相似文献   

18.
A novel highly efficient β‐nucleating agent for isotactic polypropylene (iPP), hexahydrophthalic barium (HHPA‐Ba), was found and its effects on the mechanical properties, the β‐phase content, and crystallization behavior of iPP were investigated, respectively. The results show that the β‐phase content of nucleated iPP (kβ value) can reach 80.2% with 0.4 wt % HHPA‐Ba. The impact strength and crystallization peak temperature of nucleated iPP are greatly increased. Compared with pure iPP, the impact strength of nucleated iPP can increase 2.4 times. Meanwhile, the spherulite size of nucleated iPP is dramatically decreased than that of pure iPP. The Caze method was used to investigate the nonisothermal crystallization kinetics of nucleated iPP and the crystallization active energy was achieved by Kissinger method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The isothermal and nonisothermal crystallization kinetics of nonnucleated and nucleated isotactic polypropylene (iPP) were investigated by DSC and a polarized light microscope with a hot stage. Dibenzylidene sorbitol (DBS) was used as a nucleating agent. It was found that the crystallization rate increased with the addition of DBS. The influence of DBS on fold surface energy, σe, was examined by the Hoffman and Lauritzen nucleation theory. It showed that σe decreased with the addition of DBS, suggesting that DBS is an effective nucleating agent for iPP. Ozawa's theory was used to study the nonisothermal crystallization. It was found that the crystallization temperature for the nucleated iPP was higher than that for nonnucleated iPP. The addition of DBS reduced the Ozawa exponent, suggesting a change in spherulite morphology. The cooling crystallization function has a negative exponent on the crystallization temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2089–2095, 1998  相似文献   

20.
Dodecyl amine functionalized graphene oxide (DA‐GO)/isotactic polypropylene (iPP) nanocomposites were prepared via solution mixing method. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and X‐ray photoelectron spectroscopy (XPS) verified that the DA was successfully grafted onto the surface of graphene oxide. The crystallization behavior of iPP/DA‐GO nanocomposites was investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). The DSC results of both isothermal and non‐isothermal crystallization process indicated that the addition of DA‐GO can decrease the half‐time crystallization (t1/2) and elevate crystallization peak temperature (Tp) of iPP. The results of isothermal crystallization kinetics showed that the overall crystallization rates of iPP/DA‐GO nanocomposites, especially with higher DA‐GO content, were much faster than that of neat iPP. During the non‐isothermal crystallization process, the nucleation ability (Φ) of nanocomposites containing 0.05, and 0.5 wt % DA‐GO were 0.83 and 0.69, respectively. And the crystallization activation energy of iPP decreased from 348.7 (neat iPP) to 309.2 and 283.1 kJ/m 2 by addition of 0.05 and 0.5 wt % DA‐GO, respectively. The decrease of Φ and indicated DA‐GO has strong heterogeneous nucleation effect and can promote the crystallization of iPP significantly. Additionally, POM micrographs showed the DA‐GO in iPP matrix can form more nucleation sites for the spherulite growth. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号